基于图模型反问题的上下游水污染冲突事件的第三方调解策略研究
作者:
中图分类号:

C934

基金项目:

国家自然科学基金(71971115)


Mediation strategy of third party for upstream and downstream water pollution conflict based on inverse problem of graph model for conflict resolution
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
  • 文章评论
    摘要:

    针对上下游水污染冲突,基于冲突分析图模型反问题理论构建了第三方调解模型,在充分考虑冲突双方偏好底线的前提下,获取双方做出最小让步后的冲突化解策略。基于反问题理论构建了一个0-1多目标规划第三方调解模型,并进行模型求解设计。最后,将模型应用于跨流域上下游水污染冲突事件,进一步验证了该模型求解调解方案及调整偏好的有效性。研究表明,所提方法能找到使上下游地区做出最小偏好让步的最优状态,有效辅助第三方制定调解策略,从而化解水污染冲突,为相关水资源冲突调解提供借鉴。

    Abstract:

    For the upstream and downstream water pollution conflict, a third-party mediation model is established based on the inverse problem of graph model for conflict resolution. The model is used to obtain an equilibrium that minimizes the preference adjustments on the premise of fully considering the bottom line of preferences of both parties of the conflict. Based on the inverse problem theory, a 0-1 multi-objective programming third-party mediation model is proposed, and the model solution is designed. Finally, the model is applied to the water pollution conflict in the upstream and downstream areas, which further verifies the effectiveness of the model in solving mediation schemes and adjusting preferences. The third party can resolve the conflicts by using the model. The optimal state can be achieved that can make the upstream and downstream areas make the minimum preference concession so as to provide reference for the mediation of conflicts for water resources.

    参考文献
    [1] 王亚杰,张瑞美.水资源资产化管理制度框架及实现路径[J].水利经济,2019,37(4):27-31.
    [2] 陈军飞,裴金鹏.基于博弈视角的三阶段流域水量冲突协调分配研究[J].水利经济,2019,37(1):49-53,58.
    [3] FANG L, HIPEL K W, KILGOUR D M. Interactive decision making: The graph model for conflict resolution[M]. New York: Wiley, 1993.
    [4] XU H Y, HIPEL K W, KILGOUR D M, et al. Conflict resolution using the graph model: Strategic interactions in competition and cooperation[M]. Cham: Springer, 2018.
    [5] KEVIN S. Conflict and third-party intervention[J]. Defence and Peace Economics, 2003,14(6):389-400.
    [6] ALI S, XU H Y, XU P, et al. Attitudinal analysis of Russia-Turkey conflict with chinese role as a third-party intervention[C]. International Conference on Group Decision and Negotiation. Cham, Springer:2018:167-178.
    [7] 胡玉盼,陈艳萍.基于F-H方法的黄河流域跨边界水污染冲突研究[J].水利经济,2016,34(2):68-71.
    [8] 于晶,赵敏,孙冬营,等.基于图模型的流域上下游水质污染冲突研究[J].水利学报,2013,44(12):1389-1398.
    [9] KINSARA R A, KILGOUR D M, HIPEL K W. Inverse approach to the graph model for conflict resolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015,45(5):734-742.
    [10] 吴正稿.基于第三方调解策略的冲突分析反问题研究[D].南京:南京航空航天大学,2019.
    [11] XU H Y, HIPEL K W, KILGOUR D M. Matrix representation of solution concepts in multiple decision-makergraph models[J]. IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans, 2009,39(1):96-108.
    [12] FANG L, HIPEL K W, KILGOUR D M, et al. A decision support system for interactive decision making-Part I: Model formulation[J]. IEEE Transactions on Systems Man and Cybernetics Part_C, 2003,33(1):42-55.
    [13] FANG L, HIPEL K W, KILGOURD M, et al. A decision support system for interactive decision making-Part II: Analysis and output interpretation[J]. IEEE Transactions on Systems Man and Cybernetics Part_C: Applications and Reviews, 2003,33(1):56-66.
    [14] NASH J F. Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences of the United States of America, 1950,36(1):48-49.
    [15] HOWARD N. Paradoxes of rationality: Theory of metagames and political behavior[M]. Cambridge, MA: MIT Press, 1971.
    [16] HOWARD N. The present and future of metagame analysis[J]. European Journal of Operational Research, 1987,32(1):1-25.
    [17] FRASER N M, HIPEL K W. Conflict analysis: Models and resolutions[M]. New York: North-Holland, 1984.
    [18] FANG L, HIPEL K W, KILGOUR D M. Conflict models in graph form: Solution concepts and their interrelationships[J]. European Journal of Operational Research, 1989,41(1):86-100.
    [19] NASH J F. Non-Cooperative Games[J]. Annals of Mathematics(Second Series), 1951,54(2):286-295.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐海燕,武梓馨,吴正稿.基于图模型反问题的上下游水污染冲突事件的第三方调解策略研究[J].水利经济,2021,39(1):40-46.(XU Haiyan, WU Zixin, WU Zhenggao. Mediation strategy of third party for upstream and downstream water pollution conflict based on inverse problem of graph model for conflict resolution[J]. Journal of Economics of Water Resources,2021,39(1):40-46.(in Chinese))

复制
分享
文章指标
  • 点击次数:2496
  • 下载次数: 3380
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-05-30
  • 在线发布日期: 2021-02-01
  • 出版日期: 2021-01-30