DOI: 10. 3876/j. issn. 1000 - 1980. 2025. 01. 005

温州市不同海拔极端降水时空演变

毕可心1,董增川1,李大勇1,贾海勇2,朱圣男1,戴 钰1

(1.河海大学水文水资源学院,江苏南京 210098; 2. 温州市水文管理中心,浙江 温州 325009)

摘要:基于温州市 58 个雨量站点 1970—2020 年的降水资料,采用滑动平均、Mann-Kendall 趋势检 验、反距离加权插值和 Spearman 秩相关检验等方法,分析了 9 个极端降水指数在不同海拔的时空 演变特征,并对指数的变化进行了归因分析。结果表明:极端降水指数与海拔呈正相关关系,各极 端降水指数随海拔的升高而增加;年降水量、极端降水量和1 日最大降水量等极端降水指数都随时 间表现出不同程度的上升趋势;极端降水量、极端降水频次和降水日数等指数在温州市的空间分布 上由西向东递减;极端降水阈值在空间上差异明显。

关键词:极端降水:海拔梯度:时空变化:温州市

中图分类号:P426.6 文献标志码:A 文章编号:1000-1980(2025)01-0031-10

Temporal and spatial evolution of extreme precipitation at different altitudes in Wenzhou City, China

BI Kexin¹, DONG Zengchuan¹, LI Dayong¹, JIA Haiyong², ZHU Shengnan¹, DAI Yu¹

(1. College of Hydrology and Water resources, Hohai University, Nanjing 210098, China;
2. Wenzhou Hydrological Management Center, Wenzhou 325009, China)

Abstract: Based on precipitation data from 58 rainfall stations in Wenzhou City from 1970 to 2020, the spatio-temporal evolution of nine extreme precipitation indices at different altitudes was analyzed by using the methods of moving averages, Mann-Kendall trend test, inverse distance weight, and Spearman's rank correlation test, and attribution analysis of changes in the indices was carried out. The results show that there is a positive correlation between extreme precipitation indices and altitude, which is that the extreme precipitation indices increase with altitude. The extreme precipitation indices, such as annual precipitation, extreme precipitation and 1-day maximum precipitation, all showed different degrees of increasing trends with time. The indices of extreme precipitation, frequency of extreme precipitation and number of days of precipitation decrease from west to east in the spatial distribution of Wenzhou City. Extreme precipitation thresholds vary significantly in space.

Key words: extreme precipitation; altitude gradient; spatio-temporal variation; Wenzhou City

受气候变化和人类活动的双重影响,近年来全球范围内频发极端降水事件^[1-2]。极端降水作为极端气候 事件的表现之一,与洪涝灾害有着极为密切的联系,极易引发严重的山洪和泥石流等自然灾害^[3-5]。国内外 针对极端降水变化特征开展了多维度的研究,包括对极端降水数据的分析、模型的评估以及未来变化情景下 极端降水的预测等^[6-8],分析点包括极端降水的频率、周期性、趋势性、突变性等^[9]。Donat 等^[10]研究发现,过 去 60 a 平均极端日降水量呈显著增加趋势,且未来将继续增加;Mondal 等^[11]调查了南亚地区在未来全球变 暖阈值下的极端降水风险及相关影响因素,发现极端降水事件的增加会加剧南亚地区城市洪涝灾害;Hu 等^[12]将降水事件划分为4个等级并分析了不同等级降水量和降水频率的时空变化趋势,发现长江流域的强 降水量和频率增加趋势显著;杨金虎等^[13]对中国年极端降水事件在空间上的平均分布和异常分布特征以及 时间上的突变性和周期性进行了分析,并挖掘了极端降水与年降水量之间的关系,发现中国年极端降水事件

基金项目: 温州市水文高质量发展先行区建设项目(WZSW-GZLFZXXQ-202105)

作者简介:毕可心(1996—),女,硕士研究生,主要从事水资源规划与管理研究。E-mail:bkx@hhu.edu.cn

通信作者:董增川(1963—),男,教授,博士,主要从事水资源规划与管理研究。E-mail:zcdong@hhu.edu.cn

引用本文: 毕可心,董增川,李大勇,等. 温州市不同海拔极端降水时空演变[J]. 河海大学学报(自然科学版),2025,53(1):31-40.

BI Kexin, DONG Zengchuan, LI Dayong, et al. Temporal and spatial evolution of extreme precipitation at different altitudes in Wenzhou City, China[J]. Journal of Hohai University(Natural Sciences), 2025, 53(1):31-40.

在时空上有明显的差异,目夏季极端降水与年降水量之间有较好的相关性:汪宝龙等^[14]对青海省极端降水 阈值的空间分布以及极端降水指数的时空分布进行了分析,发现青海省各极端降水指数存在明显时空差异; Han 等^[15]研究了长江三角洲 1957—2013 年的年降水量和季节降水量极值的变化趋势,认为长三角城市群 的城市洪涝发生频率呈上升趋势;董欣等^[16]研究了西南地区不同海拔的极端降水特征,发现随着海拔升高, 极端降水指数中降水小时数和弱降水小时数增加,而其他极端降水指数呈下降趋势。此外,也有学者利用降 水数据,城市发展数据和城郊雨量站点对比分析等研究极端降水事件的时空变化特征以及城市化的影响,结 果表明城市化发展的不同阶段对极端降水的强度和频数影响不同,长三角、珠三角等城市化发达地区的雨岛 效应显著[17-19]。

极端降水一般强度大、时间短、危害强^[20]。研究极端降水事件的特征及分布规律,对城市防洪和可持续 发展意义重大[21-22]。温州市由于其特殊的地理位置和多变的气候条件,在一年的不同季节受到来自不同方 向的气流以及海洋的影响,这种复杂性导致了温州市的极端降水事件频发且变化多样。因此,本文基于温州 市 58 个雨量站点 1970—2020 年的逐日降水数据,分析了极端降水的时空变化特征,并对其进行了归因分 析,旨在为城市防洪和水资源管理提供参考。

研究区概况 1

温州地处浙江省东南沿海,境内地势由东南向西北呈现梯形倾斜。陆地地貌以山地为主,平原次之。西 北部多山地丘陵,间有河谷平地:中部滨海平原,人工河渠众多:东部平原地区河道纵横交错,海岸线蜿蜒曲 折,岛屿环列。气候类型为亚热带季风气候,温暖湿润,四季分明,雨量丰富,降水量时空分布不均,年均降水 量从沿海向山区递增(1235.370~2463.200mm),降水量的年际变化最大值与最小值之比可达2,多年平均 降水量为 1917.511 mm,降水量年内变化呈双峰型,4-7 月为梅汛期,降水日数多且量大,7-10 月为台汛 期,易受台风暴雨影响,极易发生极端气候事件。

研究数据与方法 2

2.1 研究数据

本文的温州市包括温州市辖区以及瑞安市、乐清市、 永嘉县、平阳县、苍南县、文成县、泰顺县7个县市。数据 观测时段为 1970—2020 年。为了保证各雨量站点资料 的同步性,选取观测时段内缺测天数少于7的站点作为 有效站点,并对缺测数据进行线性插补,最终选取了 58个雨量站,其中低海拔地区 H1 包含 36个,中海拔地 区 H2 包含 16 个,高海拔地区 H3 包含 6 个,各雨量站分 布如图1所示。

图例 • H1区雨量站 H2区雨量站 • H3区雨量站 高程/m 28°N 1 584 $27^{\circ}N$ 20 40 km 120°E $121^{\circ}E$

图1 温州市雨量站分布

2.2 研究方法

首先采用自然断点法^[23]将温州市海拔分为3个区, Fig.1 Distribution of rainfall stations in Wenzhou City 然后用百分位法定义了极端降水阈值,选取了9个极端

降水指数,采用滑动平均法、Mann-Kendall 趋势检验、反距离加权插值和 Spearman 秩相关检验等方法分析了 极端降水阈值的空间分布以及9个极端降水指数在不同海拔的时间变化特征和空间分布格局,最后讨论了 极端降水指数时空演变的影响因子。

2.2.1 海拔梯度分类方法

自然断点法是基于 Jenks 优化算法的一种用于确定数据分布中自然群组界限的统计方法,它通过调整 类内方差与类间方差的比率,达到既保持组内数据的一致性,又最大化组间数据差异性的目标。本文应用自 然断点法对研究区域的海拔进行了分类,将其划分为3个不同的海拔区域,海拔低于245m的区域为低海拔 地区 H1:海拔在 245~589 mm 的区域为中海拔地区 H2:海拔大于 589 m 的区域为高海拔地区 H3。

2.2.2 百分位值法

极端降水阈值是指一定时间内降水量达到或超过某一个特定值的界限,该界限用于界定降水事件的强

度等级,超出这一界限的降水事件为极端降水事件。极端降水阈值的确定通常基于历史气象数据的统计分 析,同时需要考虑特定地区的气候特征和变化模式。目前国际上定义极端降水阈值主要有 5 种方法^[24]:最 大值法、绝对临界值法、标准差法、百分位值法、隶属度法。本文采用百分位值法定义极端降水的阈值,该方 法的核心在于选择一个特定的百分位数(如第 95 或第 99 百分位)对应的降水量作为阈值,以此来划分极端 降水事件。

筛选出研究区各雨量站 1970—2020 年逐日降水量大于 0.1 mm 的降水事件,并按升序排列,把第 95 个 百分位对应的降水量作为该雨量站的极端降水阈值^[25-26]。若某日降水量超过该站的极端降水阈值,则该日 发生极端降水。

极端降水指数是用来衡量某个地区在一定时间范围内出现极端降水事件的程度和频率的指标,结合国际通用的极端气候指数^[27]以及研究区降水的相关研究,选取出9个极端降水指数(表1)用于分析温州 1970—2020年极端降水在不同海拔的时空分布特征。

		Table 1 Extreme precipitation indices	
名称	缩写	定义	单位
极端降水量	R95	日降水量大于第95百分位的降水量之和	mm
极端降水频次	EPF	某年发生极端降水的日数	d
极端降水强度	EPI	极端降水量除以极端降水频次	mm∕ d
1日最大降水量	Rx1day	某年的最大日降水量	mm
5日最大降水量	Rx5day	每5d的最大降水量	mm
年降水量	PRCRTOT	年内降水量总和	mm
降水日数	RD	年内日降水量超过 0.1 mm 的日数	d
弱降水日数	LPD	年内日降水量在 0.1~10 mm 的日数	d
强降水日数	HPD	年内日降水量超过 25 mm 的日数	d

表 1 极端降水指数 Table 1 Extreme precipitation indice

2.2.3 Mann-Kendall 趋势检验法

Mann-Kendall 趋势检验法是一种非参数统计检验方法,用于分析时间序列数据中的趋势。这种方法不 需要数据遵循特定的分布,且为非参数方法,因此适用于常见的非正态分布的时间序列数据,并在水文、气象 等领域发挥了重要价值。

2.2.4 Spearman 秩相关检验

Spearman 相关系数是一种非参数系数,可以有效地表征线性或非线性相关性且对异常值不敏感。因此本文采用 Spearman 相关系数分析数据之间的相关性,系数越大,相关性越强。

3 结果与分析

3.1 极端降水阈值空间分布

采用百分位值法确定各雨量站极端降水阈值,再运用 AreGIS协同反距离加权插值得到温州市极端降水阈值的空间 分布(图2)。由图2可知,温州市极端降水阈值的空间差异较 大,阈值介于166.231~469.455 mm之间,均值为251.078 mm, 其中砩头站的极端降水阈值为全市最高,洞头站极端降水阈值 为全市最低。作为沿海城市,温州市降水经常受到海洋环流、海 面温度及复杂地形的影响。尤其近年来台风事件频发,温州市 极端降水差异愈发加剧。

3.2 极端降水指数时间变化特征

3.2.1 H1区

H1 区主要包括温州市辖区、瑞安市和平阳县的中部及东部、苍南县、乐清市西南部等地。由图 3 可知, R95、EPI、Rx1day、Rx5day、PRCRTOT 和 HPD 这 6 个极端降水指数随时间呈上升趋势,EPF、RD、LPD 呈现下 降趋势。在呈下降趋势的指数中,LPD 的下降速率最大,为 0.35 d/a; RD 下降速率次之,为 0.13 d/a; EFP 下 降速率最小,为 0.01 d/a。在呈上升趋势的指数中,PRCRTOT 的上升速率最大,为 3.97 mm/a,其余依次是 R95

图 3 1970—2020 年 H1 区极端降水指数时间变化

Fig. 3 Temporal changes in extreme precipitation indices in H1 from 1970 to 2020

3.2.2 H2区

H2 区主要包括文成县南部、泰顺县北部、乐清市和永嘉县中南部等地。由图 4 可知,9 个指数变化趋势与 H1 区不同,H2 区只有 LPD 呈现下降趋势,EPF 无明显变化趋势,其他极端降水指数都表现出了不同程度的上 升趋势。在呈上升趋势的指数中,PRCRTOT 的上升速率最大,为 5.75 mm/a,其余依次是 R95(3.39 mm/a)、 Rx5day(1.24 mm/a)、Rx1day(1.15 mm/a)、EPI(0.43(mm/d)/a)、RD(0.09 d/a)、HPD(0.07 d/a)。从线性 回归趋势来看,H2 区 1970—2020 年来的弱降水日数在逐渐变少,年降水量、极端降水量和极端降水强度等 都在增加,且年降水量和极端降水量的增长速率较快。从 5 a 滑动平均来看,各指数的年际变化同样存在着 非线性趋势。此外,与 H1 区相比,H2 区的 RD 呈现相反的变化趋势,且 R95、Rx1day 和 Rx5day 的增长速率 约为 H1 区相应指数增长速率的 2 倍,降水量的增长速率也明显加快,表明在长期的变化上海拔上升对降雨 事件有一定影响。

3.2.3 H3区

H3 区主要包括文成县南部、泰顺县和永嘉县西北部等地。由图 5 可知,LPD 呈现下降趋势,为0.07 d/a,其他极端降水指数都呈上升趋势。其中,PRCRTOT 的上升速率最大,为6.30 mm/a,其余依次是 R95 (3.50 mm/a)、Rx5day(1.31 mm/a)、Rx1day(1.17 mm/a)、EPI(0.38(mm/d)/a)、HPD(0.10 d/a)、RD (0.09 d/a)、EPF(0.01 d/a)。线性回归趋势表明 H3 区 1970—2020 年大部分极端降水指数年际变化趋势与

Fig. 4 Temporal changes in extreme precipitation indices in H2 from 1970 to 2020

H2 区的变化相似,且多数指数的年际变化速率较 H2 区有所增大,由此当海拔上升到 H3 区时,极端降水事件的频次和强度都会再次增大。

由表2可知,极端降水指数平均值随着海拔的升高而增大,并且呈现出高度一致的趋势。同时,多数指数的趋势值也随着海拔的升高而增大。将9个极端降水指数分为两类,一类代表降水强度的指数,包括 R95、EPI、Rx1day、Rx5day和PRCRTOT;另一类代表降水频率的指数,包括 EPF、RD、LPD和HPD。代表降水强度的指数在3个区均呈上升趋势,R95、Rx1day、Rx5day和PRCRTOT均在H3区的上升速率最大,H1区的上升速率最小,EPI在H2区的上升速率最大,在H1区的上升速率最小,但3个区的上升速率均低于0.5(mm/d)/a。代表降水频率的指数EPF和RD在H1区均呈下降趋势,H3区呈上升趋势;LPD在3个区均呈下降趋势;HPD在3个区均量下降趋势;HPD在3个区均量下降趋势;HPD在3个区均值上增长,速率上加快,且增长的趋势更显著,需多关注该区的极端降水事件。综上,温州市不仅降水丰沛,且年降水量和极端降水事件易受到海拔影响;极端降水事件在高海拔区域发生次数较多,极易引发山洪、泥石流等灾害,后果极为严重,因此在温州市洪涝事件预警时应多关注高海拔区域中持续时间久、强度大的极端降雨事件。

3.3 极端降水指数空间变化特征

将58个雨量站的极端降水指数平均值利用反距离加权插值法进行空间插值,得出各极端降水指数的空间分布(图6)。由图6可知,温州市极端降水指数空间分布大致表现为由西向东递减,在西北和西南地区大多数值较高,高值区域主要在文成县和泰顺县,高值点位于峰文、夏炉雨量站附近,表明这些区域的降水丰沛,且极端降水量较大,降水日数充足;低值区域位于西南沿海一带,主要分布在温州市辖区、乐清市和其他沿海地带,低值点位于洞头雨量站附近,表明这些区域的极端降水量和降水日数均较少。经统计,58个雨量

Fig. 5 Temporal changes in extreme precipitation indices in H3 from 1970 to 2020

表 2 温州市不同海拔分区极端降水指数特征值

Table (2	Characteristic	values of	f extreme	precipitation	indices i	n different	altitude zo	nes of '	Wenzhou	City
1 4010 1		Chiai accel ibele	runco or	Cher chile	precipitation	maices i	ii uniter ente	antitude Los		,, cilliou	C10,

	R95				EPF	EPI			
海拔分区	平均值/mm	趋势/(mm/a)	Ζ	平均值/d	趋势/(d/a)	Ζ	平均值/ (mm/d)	趋势/ ((mm/d)/a)	Ζ
H1	561.27	1.51	0.65	7.23	-0.01	-0.89	77.30	0.31	0.68
H2	656.98	3.39	2.24*	8.03	0	2. 23 *	82.38	0.43	2.48
Н3	709.87	3.50	1.19	8.28	0.01	0.73	86.56	0.38	0.53
海拔分区	Rx1day			Rx5day			PRCRTOT		
	平均值/mm	趋势/(mm/a)	Ζ	平均值/mm	趋势/(mm/a)	Ζ	平均值/mm	趋势/(mm/a)	Ζ
H1	152.85	0.71	0.73	214.32	0.69	0.53	1 804. 74	3.97	0.94
H2	172.96	1.15	2.36*	248.93	1.24	2.61*	2067.73	5.75	2.43
Н3	185.08	1.17	0.81	258.73	1.31	0.78	2 193. 58	6.30	1.72
海拔分区	RD			LPD			HPD		
	平均值/d	趋势/(d/a)	Ζ	平均值/d	趋势/(d/a)	Ζ	平均值/d	趋势/(d/a)	Ζ
H1	154.43	-0.13	-0.88	107.86	-0.35	-2.60*	18.95	0.06	1.58
H2	170.28	0.09	2. 21 *	116.73	-0.08	2.45 *	21.89	0.07	2.51
Н3	175.05	0.09	0.58	117.16	-0.07	-0.11	24.02	0.10	2.71

注:*为变化趋势通过95%置信度检验,表明变化趋势明显;Z为 Mann-Kendall 趋势检验量。

站的多年降水量均值为1917.511mm,多年平均总降水量范围为1235.370~2463.200mm;有27个雨量站降水量超过均值,这些站点多分布于温州市高海拔地区。由于温州市受雁荡山、南越山和大鳌山等山脉的影响,因此在不同区域极端降水特征的差异较大,西部比东部沿海地带更易发生极端降水。

代表降水强度的指数里,R95的高值集中在乐清市和永嘉县的北部、文成县、平阳县西部,低值位于永嘉

图 6 1970—2020 年温州市极端降水指数空间分布

Fig. 6 Spatial distribution of extreme precipitation indices in Wenzhou City from 1970 to 2020

县东南部、市辖区以及瑞安市、平阳县、苍南县的沿海地带,最高值和最低值分别为 368.938 mm 和 834.597 mm,高低值差别较大,空间分布不均匀。EPI、Rx1day 和 Rx5day 的空间分布与 R95 空间分布的差别 主要体现在泰顺县和文成县西部的值较低,高值为低值的 1.9~2.5 倍,降水差异较大。PRCRTOT 的高值位 于乐清市北部、文成县和泰顺县,低值位于温州市辖区,年降水量差异较大,空间分布不均匀。

代表降水频率的指数 EPF、RD、LPD 和 HPD 的空间分布特征基本一致,都表现为从西北向东南递减的 趋势。在西南泰顺县、文成县极端降水频次、降水日数、弱降水日数和强降水日数均较高,年极端降水天数占 年降水日数的比例达到 4.4%,强降水日数占年降水日数的比例达到 13.7%,弱降水日数占年降水日数的比 例达到 70.5%。在温州市辖区等沿海地带极端降水频次、降水日数、弱降水日数和强降水日数均较低,最低 极端降水日数为6d,强降水日数为12d,弱降水日数为97d,年内降水日数为134d。整体而言,4个指数虽在 空间分布上的差异较大,但高值和低值的差异较小,因此温州市的降水频率在空间上差异不大。

3.4 极端降水指数变化归因分析

3.4.1 海拔与极端降水指数间的相关性

极端降水具有较强的空间异质性,且易受到大气环流、地形和下垫面的影响。本文采用 Spearman 秩相 关检验探究极端降水指数变化的影响因素。由表 3 可知,EPF、EPI、Rx1day、Rx5day 和 R95 表现出了很强的 正相关关系,Rx1day、Rx5day 与 EPI 表现出了很强的正相关关系,Rx1day 和 Rx5day 也有很强的正相关关系, PPCRTOT、RD、LPD 和 HPD 彼此之间也表现出了较强的相关性。上述相关性均通过了 99%的显著性检验。

温州市境内地形复杂,西南部山地起伏较大,东北部多为丘陵地带,东部沿海地形平坦。因此,本文分析 了 1970—2020 年温州市 58 个雨量站极端降水指数多年平均值与海拔的关系。由图 7 可知,9 个极端降水指

Table 3 Correlation analysis of extreme precipitation indices in Wenzhou City									
指数	R95	EPF	EPI	Rx1day	Rx5day	PRCRTOT	RD	LPD	HPD
R95	1								
EPF	0.713 **	1							
EPI	0.858 **	0.315	1						
Rx1day	0.892 **	0.411 **	0. 966 **	1					
Rx5day	0. 940 **	0. 509 **	0. 953 **	0. 978 **	1				
PRCRTOT	0.009	0.316	-0.137	-0.063	-0.055	1			
RD	-0.091	0.360**	-0.331	-0.216	-0.191	0. 844 **	1		
LPD	-0.020	0.287	-0.168	-0.104	-0.093	0. 971 **	0. 840 **	1	
HPD	-0.129	0.331	-0.392	-0.266	-0.237	0. 604 **	0. 903 **	0. 603 **	1

表 3 温州市各极端降水指数相关性分析 Fable 3 Correlation analysis of extreme precipitation indices in Wenzhou C

注:**为相关性达到了99%显著性水平。

数与海拔均呈正相关关系,表明随着海拔的升高,极端降水事件增多,极端降水强度增大,年降水天数增加, 年降水量也在不断增大,这意味着高海拔地区比低海拔地区更加湿润。Spearman 秩相关检验结果表明,EPF 和 RD 与海拔的相关性最为显著,Spearman 相关系数分别为 0.778 和 0.747;LPD、HPD 和 PRCRTOR 的相关 性较为显著,分别为 0.713、0.688 和 0.627,相关性均通过 99%的显著性检验。综上,海拔和温州市的极端 降水指数具有相关性,海拔高的地方极端降水量多且降水强度大,更易发生极端降水事件;海拔低的地区降 水量和降水天数都较少,极端降水可能性相对较小,反映了温州市极端降水的复杂性。

图 7 1970—2020 年温州市不同海拔极端降水指数变化

Fig. 7 Changes in extreme precipitation indices at different altitudes in Wenzhou City from 1970 to 2020

3.4.2 大气环流因子与极端降水指数间的相关性

作为沿海城市,温州市降水经常受到海洋环流和海面温度影响,大气环流因子作为影响区域气候变化的 主要因素,会导致温州市极端降水指数的时空分布发生变化。选取 1970—2020 年大气环流因子中的北大西 洋涛动(NAO)、太平洋-北美型(PNA)、太平洋年代际涛动(PDO)、南方涛动指数(SOI)和海表温度异常

(SSTA)5个因子,与同统计时段的9个极端降水指数 采用 Spearman 秩相关检验进行相关性计算,结果见 表4。由表4可知,大气环流因子会对极端降水指数 产生一定的影响,在给定的90%显著性水平下,各环 流因子与极端降水指数呈现不同程度的相关性。其中 海表温度异常(SSTA)对极端降水指数的影响最多,该 因子与 R95存在较强的负相关,而与 Rx1day 和 Rx5day存在较强的正相关;南方涛动指数(SOI)与 Rx1day存在较强的正相关;南方涛动指数(SOI)与 Rx1day存在较强的正相关。由此可见,温州市1970— 2020年的极端降水量、1日最大降水量和5日最大降水 量在长时间尺度上受南方涛动指数(SOI)和海表温度异

表 4 极端降水指数与大气环流因子相关性分析 able 4 Correlation analysis between extreme precipitation indices and atmospheric circulation factors

招进欧水北粉	Spearman 相关系数								
1汉 5 同中年 / 八 1日 女义	NAO	PNA	PDO	SOI	SSTA				
R95	-0.03	-0.13	-0.10	-0.19	-0. 23 *				
EPF	-0.14	-0.02	0.07	-0.11	0.07				
EPI	0.04	-0.17	-0.14	-0.14	0.18				
Rx1day	0.04	0.13	0.03	0. 24 *	0. 25 *				
Rx5day	-0.01	-0.08	-0.03	-0.20	0. 23 *				
PRCRTOT	-0.10	-0.01	-0.08	-0.14	0.15				
RD	-0.12	-0.02	0.07	-0.11	0.07				
LPD	-0.03	-0.08	0.13	-0.15	0.07				
HPD	-0.15	0.09	-0.06	-0.02	0.04				
決 * 书相关附进 > 00% 自我附本 型									

总体而言,极端降水指数与大气环流因子的相关性

并不是很高,最高的是 Rx1day 和海表温度异常(SSTA)的相关性(Spearman 相关系数为 0.25)。但极端降水指数两两之间的相关性以及与海拔的相关性较高,相关系数最高可达 0.978。由此可见,海拔更容易对温州市的极端降水产生影响,高海拔地区更易发生极端降水。

4 结 论

a. 温州市的极端降水阈值区域差异明显,南部和东北部阈值较高,其中砩头站的极端降雨阈值为全市 最高;西部和东南沿海阈值较低,其中洞头站极端降雨阈值为全市最低。

b. 1970—2020 年,温州市极端降水量、极端降水强度、1 日最大降水量、5 日最大降水量、年降水总量及 强降水日数在所有海拔分区均表现为上升趋势;极端降水频次、降水日数和弱降水日数在各海拔分区表现出 不同程度的上升或下降趋势。此外,海拔的升高会加剧指数的变化趋势,高海拔区域的极端降水事件应受到 更多关注。

c. 极端降水指数的空间分布表现出除极端降水强度、1 日最大降水量和5 日最大降水量外,大部分指数 从西向东呈递减趋势。在全市58 个雨量站点中,有27 个站点的极端降水指数高于平均值,这些站点主要集 中在西部和南部的高海拔地区。代表降水强度的指数空间分布差异较大,且高低值差异大,代表降水频率的 指数虽空间分布差异大,但高低值差异较小。

d. 极端降水指数与大气环流因子存在一定的相关性,但对其响应并不显著。然而指数彼此之间有较强的相关性,且与海拔存在正相关关系,特别是极端降水频次和降水日数与海拔的相关性最为显著。随着海拔的增高,极端降水事件的频率和强度有所增加,年降水天数及年降水量亦随之上升。

参考文献:

- [1] 商守卫,王磊之,王银堂,等. 1960—2019 年成都地区极端降水时空演变特征分析[J]. 水资源保护,2023,39(3):195-204.
 (SHANG Shouwei, WANG Leizhi, WANG Yintang, et al. Analysis of spatial and temporal evolution characteristics of extreme precipitation in Chengdu area from 1960 to 2019[J]. Water Resources Protection,2023,39(3):195-204. (in Chinese))
- [2] 王辉,吴文俊,王广,等. 昆明市极端降水事件演变特征及城市效应[J]. 水资源保护,2021,37(4):61-68. (WANG Hui,WU Wenjun,WANG Guang, et al. Evolution characteristics of extreme precipitation events and its urban effect in Kunming City[J]. Water Resources Protection,2021,37(4):61-68. (in Chinese))
- [3] 王雨潇,孙营营,张天宇,等. 1998—2020 年三峡库区最大1h 降水的时空变化特征[J]. 河海大学学报(自然科学版), 2023,51(1):10-18. (WANG Yuxiao, SUN Yingying, ZHANG Tianyu, et al. Temporal and spatial variations of maximum one-hour precipitation in the Three Gorges Reservoir Region from 1998 to 2020[J]. Journal of Hohai University (Natural Sciences), 2023,51(1):10-18. (in Chinese))
- [4]丁楠,沙晓军,高颖会,等. 1961—2010 年浙江省极端降水特征分析[J]. 中国农村水利水电, 2017(2):104-107. (DING Nan, SHA Xiaojun, GAO Yinghui, et al. The characteristics of extreme precipitation in Zhejiang Province from 1961 to 2010[J].

China Rural Water and Hydropower, 2017(2):104-107. (in Chinese))

- [5]张菁,张珂,王晟,等.陕甘宁三河源区 1971—2017 年极端降水时空变化分析[J].河海大学学报(自然科学版),2021,49
 (3):288-294. (ZHANG Jing, ZHANG Ke, WANG Sheng, et al. Spatiotemporal variation analysis of extreme precipitation in the Three River Source Area of the Shaanxi-Gansu-Ningxia Contiguous Region from 1971 to 2017[J]. Journal of Hohai University (Natural Sciences),2021,49(3):288-294. (in Chinese))
- [6] O'GORMAN P A, SCHNEIDER T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(35):14773-14777.
- [7] 王志福,钱永甫.中国极端降水事件的频数和强度特征[J].水科学进展,2009,20(1):1-9.(WANG Zhifu,QIAN Yongfu. Frequency and intensity of extreme precipitation events in China[J]. Advances in Water Science, 2009, 20(1):1-9.(in Chinese))
- [8] 吴志勇,白博宇,何海,等.珠江流域 1981—2020 年水文干旱时空特征分析[J]. 河海大学学报(自然科学版),2023,51 (1):1-9. (WU Zhiyong, BAI Boyu, HE Hai, et al. Temporal and spatial characteristics of hydrological drought in the Pearl River Basin from 1981 to 2020[J]. Journal of Hohai University (Natural Sciences),2023,51(1):1-9. (in Chinese))
- [9] 刘慧媛,邹磊,邢万里. 1961—2018 年海河流域极端降水时空演变特征[J].水电能源科学,2021,39(12):1-6. (LIU Huiyuan,ZOU Lei,XING Wanli. Temporal and spatial variation of extreme precipitation in Haihe River Basin during 1961-2018 [J]. Water Resources and Power,2021,39(12):1-6. (in Chinese))
- [10] DONAT G M, LOWRY A L, ALEXANDER V L, et al. More extreme precipitation in the world's dry and wet regions [J]. Nature Climate Change, 2016, 6(5): 508-513.
- [11] MONDAL S K, WANG Yanjun, ZHAI Jianqing, et al. Projected urban exposure to extreme precipitation over South Asia [J]. Science of the Total Environment, 2022, 822:153664.
- [12] HU Mulan, DONG Manyu, TIAN Xiangyou, et al. Trends in different grades of precipitation over the Yangtze River Basin from 1960 to 2017[J]. Atmosphere, 2021, 12(3):413.
- [13] 杨金虎,江志红,王鹏祥,等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究,2008,13(1):75-83. (YANG Jinhu,JIANG Zhihong,WANG Pengxiang, et al. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research,2008,13(1):75-83. (in Chinese))
- [14] 汪宝龙,张明军,魏军林,等. 1960—2009 年青海省极端降水事件的变化特征[J].水土保持通报,2012,32(4):92-96.
 (WANG Baolong, ZHANG Mingjun, WEI Junlin, et al. Changes of extreme precipitation events in Qinghai Province during 1960—2009[J]. Bulletin of Soil and Water Conservation, 2012, 32(4):92-96. (in Chinese))
- [15] HAN Longfei, XU Youpeng, PAN Guangbo, et al. Changing properties of precipitation extremes in the urban areas, Yangtze River Delta, China, during 1957-2013 [J]. Natural Hazards, 2015, 79(1):437-454.
- [16] 董欣,倪相.西南地区不同海拔极端降水时空变化特征[J].西南大学学报(自然科学版),2022,44(9):110-121.(DONG Xin,NI Xiang. Spatiotemporal variation of extreme precipitation at different elevations in Southwest China [J]. Journal of Southwest University (Natural Science Edition),2022,44(9):110-121.(in Chinese))
- [17] 曹永强,李玲慧,邵薇薇,等.珠海市香洲城区降水变化特征及成因分析[J].水资源保护,2021,37(5):9-15. (CAO Yongqiang,LI Linghui,SHAO Weiwei, et al. Analysis on characteristics and causes of precipitation change in Xiangzhou urban area,Zhuhai City[J]. Water Resources Protection,2021,37(5):9-15. (in Chinese))
- [18] 金义蓉,胡庆芳,王银堂,等. 快速城市化对上海代表站降水的影响[J]. 河海大学学报(自然科学版),2017,45(3):204-210. (JIN Yirong, HU Qingfang, WANG Yintang, et al. Impacts of rapid urbanization on precipitation at two representative rain gauges in Shanghai City[J]. Journal of Hohai University (Natural Sciences),2017,45(3):204-210. (in Chinese))
- [19] 郑祚芳,王在文,高华.北京地区夏季极端降水变化特征及城市化的影响[J]. 气象,2013,39(12):1635-1641.(ZHENG Zuofang, WANG Zaiwen, GAO Hua. Characteristics of extreme precipitation events in summer and its effect on urbanization in Beijing area[J]. Meteorological Monthly,2013,39(12):1635-1641.(in Chinese))
- [20] 王振亚,姚成,董俊玲,等.郑州"7·20"特大暴雨降水特征及其内涝影响[J].河海大学学报(自然科学版),2022,50(3):
 17-22. (WANG Zhenya, YAO Cheng, DONG Junling, et al. Precipitation characteristic and urban flooding influence of "7·20" extreme rainstorm in Zhengzhou[J]. Journal of Hohai University (Natural Sciences),2022,50(3):17-22. (in Chinese))
- [21] 付铁文,徐宗学,陈浩,等. 粤港澳大湾区 1961—2014 年降水时空演变特征分析[J]. 水资源保护,2022,38(4):56-65.(FU Tiewen,XU Zongxue,CHEN Hao,et al. Analysis on spatiotemporal evolution characteristics of precipitation in Guangdong-Hong Kong-Macao Greater Bay Area from 1961 to 2014[J]. Water Resources Protection,2022,38(4):56-65.(in Chinese))

(下转第130页)

942-946. (XU Xibin, ZHOU Liang, LIU Tao, et al. Finite element analysis of load-bearing properties of large diameter rocksocketed single pile[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2010, 29(6):942-946. (in Chinese))

- [31] 邱钰,周琳,刘松玉. 深长大直径嵌岩桩单桩承载性状的有限元分析[J]. 土木工程学报,2003,36(10):95-101. (QIU Yu, ZHOU Lin,LIU Songyu. Analysis for load- bearing characters of single large diameter, long socketed length pile, by finite element method[J]. China Civil Engineering Journal,2003,36(10):95-101. (in Chinese))
- [32] 王耀辉,谭国焕,李启光. 模型嵌岩桩试验及数值分析[J]. 岩石力学与工程学报,2007,26(8):1691-1697. (WANG Yaohui,TAN Guohuan, LI Qiguang. Test and numerical analysis of model rock-socketed pile[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1691-1697. (in Chinese))
- [33] GUTIÉRREZ-CH J G, SONG G, HERON C M, et al. Centrifuge tests on rock-socketed piles: Effect of socket roughness on shaft resistance[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021,147(11):4021125.
- [34] PRAKASH A R, MUTHUKKUMARAN K. Estimation of lateral capacity of rock socketed piles in layered soil-rock profile [J]. International Journal of Geo-Engineering, 2021, 12(1):1-15.
- [35] DAI Guoliang, SALGADO R, GONG Weiming, et al. The effect of sidewall roughness on the shaft resistance of rock-socketed piles [J]. Acta Geotechnica, 2016, 12(2):1-12.
- [36] HALL C, WANG M. Behavior of laterally loaded caissons in weak rock [J]. Geotechnical Special Publication, 2000, 15(5):240-253.
- [37] 庄海洋. 土-地下结构非线性动力相互作用及其大型振动台试验研究[D]. 南京:南京工业大学,2006.

- [38] GE Qi, XIONG Feng, XIE Lunwu, et al. Dynamic interaction of soil-Structure cluster [J]. Soil Dynamics and Earthquake Engineering, 2019, 123:16-30.
- [39] MIAO Yu,ZHONG Yi,RUAN Bin, et al. Seismic response of a subway station in soft soil considering the structure-soil-structure interaction[J]. Tunnelling and Underground Space Technology, 2020, 106(1):103629.
- [40] SUN Fuxue, WANG Guobo, PENG Xiangjun, et al. Seismic response study of tunnels running underneath a subway station in parallel[J]. Shock and Vibration, 2020, 4:1-15.
- [41] MARTIN P P, SEED H B. One dimensional dynamic ground response analysis [J]. Journal of Geotechnical Engineering, ASCE, 1982(7):935-954.
- [42] LUBLINER J, OLIVER J, OLLER S, et al. A Plastic-dam-age model forconcrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.

(收稿日期:2024-03-22 编辑:刘晓艳)

(上接第40页)

- [22] 谢志高,贾文豪,王霞雨,等.西江流域极端降水演变规律及其对洪水径流的影响[J].水利水电科技进展,2023,43(6):128-136. (XIE Zhigao, JIA Wenhao, WANG Xiayu, et al. Evolution characteristics of extreme rainfall and influence on flood runoff in Xijiang River Basin[J]. Advances in Science and Technology of Water Resources,2023,43(6):128-136. (in Chinese))
- [23] 崔嵩,贾朝阳,郭亮,等. 不同海拔梯度下极端气候事件对松花江流域植被 NPP 的影响[J]. 环境科学,2024,45(1):275-286. (CUI Song,JIA Zhaoyang,GUO Liang, et al. Impacts of extreme climate events at different altitudinal gradients on vegetation NPP in Songhua river basin[J]. Environmental Science,2024,45(1):275-286. (in Chinese))
- [24] 孔锋,史培军,方建,等. 全球变化背景下极端降水时空格局变化及其影响因素研究进展和展望[J]. 灾害学,2017,32
 (2):165-174. (KONG Feng,SHI Peijun,FANG Jian, et al. Advances and prospects of spatiotemporal pattern variation of extreme precipitation and its affecting factors under the background of global climate change[J]. Journal of Catastrophology,2017,32
 (2):165-174. (in Chinese))
- [25] 李志刚,娄嘉慧,史冲. 1960—2020 年河南省极端降水时空演变特征[J]. 华北水利水电大学学报(自然科学版),2024,45
 (4):16-26. (LI Zhigang, LOU Jiahui, SHI Chong. Spatial and temporal evolution characteristics of extreme precipitation in Henan from 1960 to 2020[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2024,45(4):16-26. (in Chinese))
- [26] 陈晓晨,徐影,姚遥.不同升温阈值下中国地区极端气候事件变化预估[J].大气科学,2015,39(6):1123-1135.(CHEN Xiaochen,XU Ying,YAO Yao. Changes in climate extremes over China in a 2°C,3°C, and 4°C warmer world[J]. Chinese Journal of Atmospheric Sciences,2015,39(6):1123-1135.(in Chinese))
- [27] ZHANG Xuebin, ALEXANDER L, HEGERL G C, et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data[J]. WIREs Climate Change, 2011, 2(6):851-870.