最严格水资源管理制度下用水总量统计工作机制设计
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

F407.9

基金项目:

水利部重大公益性项目(1261430112068);中央高校基本科研业务费项目(2014B01314)


Working mechanism design of water consumption statistics under the most stringent water management system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    在分析已有研究成果的基础上,通过实践调研,了解用水总量统计工作机制的现状,剖析当前存在的不足,分别从业务流程机制、复核机制以及激励机制3个角度出发,进行完善,具体表现为:(1)重构业务流程,即在对已有用水总量统计业务流程分析的基础上,增加监督和评估/复核等环节;(2)构建成果复核机制,即根据用水总量统计的源头数据不同,构建针对水资源监测部门和取/用水户的成果复核机制;(3)设计激励机制,即基于委托代理和激励机制设计理论,分别设计针对用水户和水资源监测部门的激励机制,并初步构建了水资源监测部门工作绩效评价指标体系。

    Abstract:

    Based on the analysis of the available research results, the current situation of working mechanism for the total water consumption statistics is known through field investigations, and the existing shortcomings are discussed. The working mechanism design is improved from three aspects of business process mechanism, review mechanism and incentive mechanism. Firstly, it is necessary to reconstruct the business process, that is, to add the supervision process and the evaluation/check process to the traditional process of the water consumption statistics. Secondly, the review mechanism should be established for the water resources monitoring departments and the water users according to differences of source data in the water consumption statistics. Finally, the incentive mechanism should be design based on the principal-agent theory and the incentive mechanism theory. The incentive mechanisms should be respectively designed for the water users and the monitoring departments, and an evaluation index system for water resources monitoring departments is initially established.

    参考文献
    相似文献
    引证文献
引用本文

王卓甫,王梅,张坤,等.最严格水资源管理制度下用水总量统计工作机制设计[J].水利经济,2016,34(2):45-48.(WANG Zhuofu, WANG Mei, ZHANG Kun, et al. Working mechanism design of water consumption statistics under the most stringent water management system[J]. Journal of Economics of Water Resources,2016,34(2):45-48.(in Chinese))

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-04-15
  • 出版日期: