DOI:10.3880/j.issn.1006-7647.2008.02.016

圆形断面临界水深的近似计算公式

赵延风 宋松柏 李

(西北农林科技大学水利与建筑工程学院 陕西 杨凌

摘要 通过对圆形断面临界流方程进行数学变换 得到圆形断面临界水深的近似计算公式 在工程 常用范围内其最大相对误差小于 0.86%。与现有的计算公式进行比较 ,结果表明该近似计算公式 形式简单,计算精度高,使用方便。

关键词 圆形断面 临界水深 近似计算

中图分类号:TV131.4

文献标识码:A

文章编号:1006-7647(2008)02-0062-03

Approximate formula for calculating the critical water depth at circular cross section//ZHAO Yan-feng, SONG Song-bai, LI Yu College of Water Resources and Architectural Engineering , Northwest A&F University , Yangling 712100 , China) Abstract: An approximate formula for calculating the critical water depth at circular cross section was derived from mathematical transformation of the critical flow equation. The maximum relative error , at the common range of engineering , is less than 0.86%. Comparison with existing formulas shows that this approximate formula has simple form and high precision, and can be conveniently applied.

Key words: circular cross section; critical water depth; approximate calculation

圆形断面是无压输水隧洞常见断面形式之一, 由于它的受力以及水流条件都比较好而广泛应用于 水利水电、农田灌排、城市给排水等工程中。圆形断 面的临界水深是水力计算中一个重要的水力要素, 但是由于它是一个隐函数 ,无法直接求解 ,传统的求 解方法就是查图表或者试算法,这些方法既费时又 费力,而且精度不高。经验公式11形式比较简单、但 误差较大。近10多年来不少专家提出了一些近似 或者迭代的计算方法 25] 其中个别公式不仅形式简 单、适用范围广,而且精度高,解决了不少工程实际 问题。本文通过对圆形断面临界流方程进行数学变 换 得到了一种更为简捷、精度较高的近似计算公 式,供同行参考应用。

圆形断面临界水深基本方程

临界流的基本方程[6]为

$$\alpha \frac{Q^2}{\varphi} = \frac{A_k^3}{B_k} \tag{1}$$

圆形断面的水力要素为

$$h_k = \frac{d}{2} \left(1 - \cos \frac{\theta}{2} \right) \tag{2}$$

$$A_k = \frac{d^2}{8} (\theta - \sin \theta)$$
 (3)

$$B_k = d\sin\frac{\theta}{2} \tag{4}$$

式中:α 为流速分布不均匀系数,无特殊说明时取 1.0 ; Q 为过水流量 , m^3/s ; g 为重力加速度 , 通常取 $9.81 \,\mathrm{m/s^2}$; A_k 为发生临界流时的过水断面面积 , m^2 ; B_k 为发生临界流时的水面宽度 m ; h_k 为临界水深 , m;d 为圆形断面直径 $m;\theta$ 为发生临界流时的圆心 角 rad。

将式(2)~(4)代入式(1)中,得圆形断面临界水 深的基本方程为

$$\frac{(\theta - \sin\theta)^3}{\sin\frac{\theta}{2}} = \frac{512\alpha Q^2}{gd^5}$$
 (5)

圆形断面临界水深的近似计算公式

$$k = \frac{(\theta - \sin \theta)^3}{\sin \frac{\theta}{2}} = \frac{512\alpha Q^2}{gd^5}$$
 (6)

$$x = \frac{h_k}{d} \tag{7}$$

式中: k 为无量纲参数: x 为圆形断面无量纲临界水深。

基金项目:国家自然科学基金(50579065),西北农林科技大学"青年学术骨干支持计划",西北农林科技大学优秀科技人才基金(04ZR014) 作者简介 赵延风(1963—) 陕西西安人 实验师 从事水资源、水工程研究。 E-mail iyfz@nwsuaf.edu.cn

对于公式(7)中x的取值范围,根据文献(4)以 及工程实际的要求,无压流圆形断面在输水过程中 为避免产生明满流交替的水流现象,对自由水面以 上的净空面积要求不小于全断面面积的 15% ,即过 水断面圆心角 $\theta \le 4.39 \text{ rad}$ 相应的 x < 0.8。为了和 已有的计算方法进行比较,本文将 x 的取值范围扩 大到 0.85 流当 x < 0.05 时 工程中计算临界水深没 有实际意义^[5],因此 x 的取值范围一般为 $x \in$ [0.05,0.85]。在该范围内,通过回归分析,得出 x与 k_i 之间存在函数关系,即

$$x = 0.207 \, 2k_0^{0.2555} \tag{8}$$

$$k_0 = 512 \frac{\alpha Q^2}{gd^5} \tag{9}$$

经过对式 5)分析计算可知,式(8)还可以表示 为下列多种形式(但理论上函数值 x 不变):

$$x = 0.6735 k_1^{0.2555} \tag{10}$$

$$k_1 = 5.12 \frac{\alpha Q^2}{g d^5}$$
 (11)
 $x = 0.8043 k_2^{0.2555}$ (12)

$$x = 0.8043 k_2^{0.2555} \tag{12}$$

$$k_2 = 2.56 \frac{\alpha Q^2}{gd^5} \tag{13}$$

式中: k_0, k_1, k_2 分别为式(5)两边同时除以 1,100, 200 时所得的 k 值 ,因此 ,x 与 k 之间存在的函数关 系式可用通式表示为

$$x = \beta k^{0.2555} \tag{14}$$

从以上分析可以看出 ,式中的 β 为一常数 β 值 可以随 k 值变化而变化,可随等式(5)两边同时除以 任意正数 c 值而发生变化 ,但理论上式(8)(10), (12)中的函数值 x 不变。为了使式(14)更简便 ,可 寻找一个使 $\beta = 1$ 的 k 值。因此在式(5)两边同时 除以任意一个正数 c 得

$$\frac{(\theta - \sin\theta)^3}{c\sin\frac{\theta}{2}} = \frac{512\alpha Q^2}{cgd^5}$$
 (15)

经过分析计算知道 ,当式 15)中的 c = 471.8894时 $\beta \approx 1$,代入式 15)得

$$\frac{(\theta - \sin\theta)^3}{471.8894 \sin\frac{\theta}{2}} = 1.085 \frac{\alpha Q^2}{gd^5}$$
 (16)

$$\mathbb{P} \qquad k = \frac{(\theta - \sin\theta)^3}{471.8894 \sin\frac{\theta}{2}} = 1.085 \frac{\alpha Q^2}{gd^5} \qquad (17)$$

因此当 $x \in [0.05, 0.85]$, $k = 1.085 \frac{\alpha Q^2}{gd^5}$ 时,式(14)可 变为

$$x = k^{0.2555} \tag{18}$$

将式(18)代入式(7)得到圆形断面临界水深的近似 计算公式为

$$h_k = dk^{0.2555} {19}$$

 $k = 1.085 \frac{\alpha Q^2}{\sigma d^5}$ (20)

计算公式精度评价

3.1 本文公式误差计算

其中

前面已提及为保证无压管流水面以上的通气空 间 x 取值一般小于 0.85 ,当 x 小于 0.05 时工程中计 算临界水深已经没有实际意义 因此本文的误差计算 范围划定在 $x \in [0.05, 0.85$ 范围内 结果见表 1。

表 1 圆形断面临界水深计算误差计算结果

\boldsymbol{x}	θ/rad	k	x_1	θ_1/rad	Δ /%
0.05	0.902	0.000	0.050	0.899	-0.677
0.10	1.287	0.000	0.100	1.289	0.327
0.15	1.591	0.001	0.151	1.597	0.698
0.20	1.855	0.002	0.202	1.863	0.806
0.25	2.094	0.005	0.252	2.103	0.769
0.30	2.319	0.009	0.302	2.327	0.642
0.35	2.532	0.017	0.352	2.539	0.458
0.40	2.739	0.028	0.401	2.743	0.238
0.45	2.941	0.044	0.450	2.941	-0.002
0.50	3.142	0.066	0.499	3.137	-0.246
0.55	3.342	0.095	0.547	3.331	-0.476
0.60	3.544	0.132	0.596	3.528	-0.671
0.65	3.751	0.180	0.645	3.729	-0.801
0.70	3.965	0.240	0.694	3.940	-0.821
0.75	4.189	0.316	0.745	4.166	-0.660
0.80	4.429	0.414	0.798	4.421	-0.189
0.85	4.692	0.547	0.857	4.733	0.854

从表 1 可以看出 在工程常用范围内 本文公式 计算圆形断面临界水深的最大相对误差小于 0.86%。

3.2 几种典型的计算公式及其计算误差比较

有关计算圆形断面临界水深的方法很多,但就 其形式、通用性、计算精度3个方面考虑,有2种公 式 孙建公式及王正中公式)相对较好,其公式形式 及其最大相对误差列于表 2 中。为了方便比较,将 本文公式也列于表 2 中。此外,表 2 中还列出了 1种经验公式 其适用范围与上述 3种公式相同 即

$$x = \frac{h_k}{d} \in [0.05 \ 0.85]$$

表 2 圆形断面临界水深公式形式及其最大相对误差比较

10 亿 2 2 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	// 四個作小// 公工///工/及共取/	们的民生记载	
公式名称	公式形式	最大相对误差/%	
经验公式	$h_k = \frac{0.573 Q^{0.522}}{d^{0.3}}$	4.483	
孙建公式	$\begin{cases} h_k = d(0.102541 \eta + 0.95714 \eta^{\frac{1}{2}}) \\ (k_w \in (0.1.938]) \\ h_k = d(-0.41581 \eta + 1.57351 \eta^{\frac{1}{2}}) \\ 0.182354) (k_w \in (1.938.16.141) \end{cases}$	0.331	
王正中公式	$h_k = d\left(\frac{k_w}{29}\right)^{\frac{1}{3.9}}$	1.308	
本文公式	$h_k = dk^{0.2555}$	0.854	

· 63 ·

 $\frac{1}{\cancel{1}} : \eta = \sqrt{\frac{k_w}{32}}, k_w = \frac{\alpha Q^2}{\rho T^5}, k = 1.085 \frac{\alpha Q^2}{g d^5}$

从表 2 可以看出 经验公式形式较简单 但最大相对误差最大,而且不便于记忆;孙建公式误差最小,但公式复杂,而且是分段函数表示;王正中公式最大相对误差较小,但公式形式还是不够简单;本文公式形式最为简单,容易记忆,最大相对误差小于0.86%。因此 笔者认为本文公式是计算圆形断面临界水深的最佳公式。

4 应用举例

例 1:某水利工程的引水隧洞设计泄流量为 $500\,\mathrm{m}^3/\mathrm{s}$,拟用圆形断面 ,初设直径为 $15\,\mathrm{m}$,试计算洞内的临界水深值。

解:由式(20)计算得 k = 0.0364,由式(19)计算得 $h_k = 6.4341$ m。

例 2 以文献 4]为例 ,某引水式电站输水隧洞 为圆形断面 ,流量为 $8 \, \mathrm{m}^3/\mathrm{s}$,洞径为 $3 \, \mathrm{m}$,试计算洞内 的临界水深。

解:由式(20)计算得 k = 0.0291,由式(19)计算得 $h_k = 1.2152$ m。

用经验公式、孙建公式和王正中公式分别计算例 1 和例 2 计算结果列于表 3 中。

从 2 个算例的计算过程和表 3 中的误差比较可以看出,用本文近似计算公式求解圆形断面的临界

水深不仅求解过程简单 ,而且计算精度高 ,能够满足工程实际要求。

表 3 不同计算方法误差比较

计算条件	公式名称	临界水深 计算值/m	临界水深 精确解/m	相对 误差/%
	经验公式	6.5191	6.4275	1.425
例 1	孙建公式	6.4267	6.4275	-0.012
$Q = 500 \mathrm{m}^3/\mathrm{s}$ $d = 15 \mathrm{m}$	王正中公式	6.4425	6.4275	0.233
<i>a</i> = 13 m	本文公式	6.4341	6.4275	0.103
	经验公式	1.2202	1.2129	0.601
例 2	孙建公式	1.2127	1.2129	-0.016
$Q = 8 \mathrm{m}^3/\mathrm{s}$ $d = 3 \mathrm{m}$	王正中公式	1.2169	1.2129	0.330
a 15 m	本文公式	1.2152	1.2129	0.200

参考文献:

- [1]武汉水利电力学院.水力计算手册[M].北京:水利电力出版社,1983.
- [2]孙建 李宇. 圆形和 U 形断面明渠临界水深的直接计算公式 J]. 陕西水力发电, 1996, 12(3) 39-42.
- [3]张文卓. 圆形断面临界水深计算[J]. 四川水力发电, 2002, 21(1):15-17.
- [4]吕宏兴,把多铎,宋松柏.无压流圆形断面水力计算的迭代法,J].长江科学院院报,2003,20(5):15-17.
- [5]王正中,陈涛,万斌,等.圆形断面临界水深的新近似计算公式,J].长江科学院院报,2004,21(2):1-2.
- [6]吴持恭.水力学 M].北京 高等教育出版社 ,1979.

(收稿日期 2007-05-15 编辑:高建群)

(上接第3页)

相对误差,可以看出 SVM 方法较 ANN 方法更为稳定、可靠,表明基于 SVM 方法的泥石流输沙量预测方法在数据拟合方面有良好的性质,其数据预测精度在泥石流输沙量研究中也是可以接受的,该方法值得进一步深入研究。下一步的研究应考虑以下 2种情况 ①鉴于控制泥石流输沙的因子很多,可在深入分析的基础上适当增加影响因子,②本文 SVM 模型预测时所选择的参数可能并不是最优的,采用其他优化算法可能会得到更好的效果。

4 结 语

SVM 方法是一种基于结构风险最小的小样本学习方法,可以较好地解决以往 BP 神经网络模型非线性方法容易出现的小样本、过学习、局部最小等难题。本文将 SVM 方法引进流域泥石流输沙量预测,为泥石流输沙量预测研究提供了一条新的思路和途径,具有较大的实用价值。采用复相关分析方法,选定过程降水、前期降水和泥石流历时为流域泥

石流输沙的主要影响因子。实例分析和对比研究表明 SVM 方法的整体预测效果要优于 BP 神经网络模型 ,用于泥石流输沙量预测有较好的前景 ,可进一步探讨泥石流输沙因子和 SVM 模型参数的选择对预测效果的影响。

参考文献:

- [1]金菊良,丁晶,水资源系统工程 M].成都,四川科学技术 出版社 2002.
- [2] VAPNIK V. 统计学习理论[M]. 许建华, 张学工译. 北京: 电子工业出版社, 2004.
- [3] VAPNIK V. 统计学理论的本质 M]. 张学工译. 北京 清华 大学出版社 2000.
- [4]陈景武.云南东川蒋家沟泥石流爆发与暴雨关系的初步分析 C]/中国科学院水利部成都山地灾害与环境研究所.全国泥石流学术会议论文集.成都[出版者不详], 1980 93-99.
- [5] 张超 杨炳根, 计算地理学基础 M]. 北京 高等教育出版 社,1993.

(收稿日期 2007-01-16 编辑:高建群)