嘉绍高速公路软土工程特性

谢 熠,曹时敏

(嘉兴市嘉绍高速公路投资开发有限责任公司,浙江嘉兴 314050)

摘要:通过软土土工试验研究超载预压方法处理路基工程在加载、卸载和再加载等复杂应力路径条件下的土体变形情况,分析加载、卸载复杂应力作用过程中软土的固结变形特征,以获得不同压力 下软土的固结变形规律及其变形特性参数。

关键词:高速公路;软土地基;沉降规律

中图分类号:U416.16 文献标志码:A

影响软土路基沉降计算的因素很多,目前工程 中常用的软土路基沉降计算中均未考虑压力以及不 同超载量对其的影响。为了使计算结果更符合实际 情况,本文通过室内试验研究超载预压方法处理路 基工程在加载、卸载和再加载等复杂应力路径条件 下的土体变形情况,分析加载、卸载复杂应力作用过 程中软土的固结变形特征,以获得不同压力下软土 的固结变形规律及其变形特性参数。通过单向固结 试验,得到在加载、卸载及再加载3个阶段,土体模量 和固结系数随压力的变化规律,为不同超载量及不同 压力下的沉降量计算及工后沉降预测提供依据。

1 软土土工试验

1.1 试验内容

对嘉绍高速公路路基土样进行物理和力学特性 参数检测,主要检测项目有含水率、密度、相对质量、 液限、塑限、渗透、高压固结、无侧限抗压强度、直接 快剪、三轴固结排水剪等,以获取试验土样的物理力 学参数。针对现场超载预压处理软土路基施工中存 在的分级加载、卸载及再加载复杂应力作用过程,进 行单向加载、卸载固结模拟试验,以得到各级荷载下 土体模量及固结系数,分析加载、卸载不同受荷情况 下土体变形固结特性及其差异性。

1.2 试验方法

试验方法依据 GB/T 10123—1999《土工试验方法标准》中的规定进行。

1.3 加载、卸载单向固结模拟试验

试验进行了单调加载、单调卸载及再加载3个

文章编号:1006-7647(2013)S1-0038-03

过程,以得到加载、卸载及再加载下土体固结变形特性。为考虑先期固结压力对各阶段土体变形可能的 影响,在卸载时土样上覆最大压力根据土样所处的 地基深度而定,尽量大于先期固结压力。测得土的 压缩曲线,并测试加载 100 kPa、200 kPa 及卸载再加 载情况下各级荷载对应的 d-√t 曲线,仍采用上述方 法进行数据处理,得到各荷载下土的压缩系数、压缩 模量、固结系数等。

1.4 试验结果

用上述方法进行试验并进行试验结果处理,得 到常规土工试验参数,见表1。

采用常规处理方法得到加载、卸载下的压缩及 回弹指标,对加载、卸载及再加载阶段土体模量随压 力变化关系试验结果进行分析并拟合其关系,结果 见表2。

2 试验结果分析

2.1 加载阶段

加载阶段土体模量与荷载关系见图 1(a)。由 图 1(a)可见,在较小的压力范围内,土体压缩模量 *E*_s随压力 *p* 增大而增大,并且近乎呈线性变化。可 以理解为,随着土样所受有效应力的增大,土颗粒间 相互挤压,土体越来越密实,土骨架能够抵抗压缩变 形的能力逐步增强。土体压缩模量就是土体抵抗压 缩变形的能力,所以,加载时土体压缩随压力增大而 增大(但不可能无限制增加,当压力达到极大值,土 颗粒间密实到不能再挤密时,土由塑性转为刚性,压 缩模量达到极限,不在本文讨论范围)。

作者简介:谢熠(1983—),男,浙江绍兴人,工程师,主要从事高速公路软土路基研究。E-mail:82975051@qq.com

表 1 嘉绍局速路段土丄试验家	嬱
-----------------	---

土样完早	土的夕称	沤亩/m	含水率	湿密度 ρ_0 /	干密度 $\rho_{\rm d}$ /	饱和度	孔隙比	相对	流限	塑限	塑性	液性
工作研与	工时有你	(木)支/III	w/%	$(g \cdot cm^{-3})$	$(\mathrm{g}\boldsymbol{\cdot}\mathrm{cm}^{-3})$	s _r	e	质量	$w_{\rm l(17mm)}$	$w_{\rm p(2mm)}$	指数 I _P	指数 I _L
海宁 1-1	淤泥质黏土	3.0~3.5	49.8	1.75	1.17	102	1.328	2.72	48.5	23.17	17	1.55
海宁 1-1	淤泥质黏土	3.0~3.5	49.8	1.76	1.17	103	1.315	2.72	48.5	23.17	17	1.55
海宁1-2	淤泥质粉土	$5.0 \sim 5.5$	33.6	1.87	1.40	98	0.929	2.70	35.0	21.3	10	1.28
海宁1-4	淤泥质粉质黏土	9.0~9.5	48.5	1.77	1.19	103	1.274	2.71	40.4	21.59	13	2.07
海宁1-4	淤泥质粉质黏土	9.0~9.5	48.5	1.79	1.21	105	1.248	2.71	40.4	21.59	13	2.07
海宁 2-2	淤泥质粉土	$4.0 \sim 4.2$	33.6	1.88	1.41	99	0.919	2.70	33.4	21.89	8	1.43
海宁 2-2	淤泥质粉土	$4.0 \sim 4.2$	33.6	1.86	1.39	97	0.939	2.70	33.4	21.89	8	1.43
海宁 2-4	淤泥质粉土	7.5~7.7	32.1	1.86	1.41	94	0.918	2.70	32.3	20.05	9	1.39
海宁 2-4	淤泥质粉土	7.5~7.7	32.1	1.92	1.45	101	0.858	2.70	32.3	20.05	9	1.39
王店 1-1	淤泥质粉质黏土	2.0 ~ 2.5	56.2	1.72	1.10	104	1.461	2.71	45.2	21.62	16	2.16
王店 1-2		$4.0 \sim 4.5$	53.3	1.78	1.16	108	1.343	2.72				
王店 1-4	淤泥质粉质黏土	6.7~6.9	32.8	1.91	1.44	101	0.884	2.71	33.5	16.26	12	1.43
王店 1-4	淤泥质粉质黏土	6.7~6.9	32.8	1.91	1.44	101	0.884	2.71	33.5	16.26	12	1.43
王店 2-2	淤泥质黏土	3.8 ~3.0	53.9	1.75	1.14	105	1.392	2.72	54.1	26.44	19	1.46
王店 2-2	淤泥质黏土	3.8~3.0	53.9	1.72	1.12	102	1.434	2.72	54.1	26.44	19	1.46

表 2 各阶段土体模量与荷载关系拟合结果

土样	$E_{\rm s} \sim p(E)$	(s=ap+b)	$E'_{\rm s}\sim p$	$(E'_{s}=ap^{2}+$	$E_{\rm se} \sim p(E_{\rm se} = ap + b)$		
编号	a	b	a	b	с	a	b
海宁 1-3	0.0094	0. 534 1	0.0005	0.0211	1.2728	0.0213	6. 105 1
海宁 2-2	0.0474	1.4547	0.0027	0.3460	0.0599	0.1380	13.4460
海宁 2-4	0. 039 1	1.2614	0.0035	0.1024	5.3443	0.0239	20.4440
王店 1-1	0.0111	0.2596	0.0011	-0.0196	1. 599 9	0.0105	4.0407
王店 1-4	0.0188	1.1061	0.0023	0. 1486	2. 594 4	0.1739	14.3510
王店 2-2	0.0072	0.7636	0.0005	0.0230	0.8285	0.0022	4. 789 6

2.2 卸载阶段

土体的卸荷模量即回弹模量 *E'*_s,反映土体在上 覆荷载减小时,抵抗其本身因回弹而变得疏松的能 力。卸载阶段 *E'*_s-*p* 关系曲线见图 1(b)。

由图 1(b) 可见, 卸载时土体回弹模量随压力增 大而增大, 加载时增大速率相对较大。本试验各级 荷载下土体都达到了固结稳定, 压力越大土体越密 实。随着压力的增大, 饱和土体内部含水率减小, 土 体颗粒所受黏聚力增大, 颗粒间抵抗疏松的能力越 强, 由土粒组成的试验土样抵抗回弹变形的能力越 强, 而土样的卸荷回弹模量也就越大。

2.3 再加载阶段

土体再加载阶段 E_{se}-p 关系见图 2。

图 2 土体 E_{se}-p 关系

a. *E*_{se}-*p* 关系分析。再加载阶段土体模量与加载 阶段有相似之处,均为压缩模量,所不同的是其再压缩 是在压缩的基础上,土体属于超固结状态,是在土体发 生了部分不可恢复的塑性变形情况下进行的再压缩。

b. *E*_{se}-*p* 关系拟合。对 *E*_{se}-*p* 关系进行线性拟合,结果见表3。

表 3	各试样 E_{se} - p 天系拟合结果					
土样完早	$E_{\rm se} \sim p \left(E_{\rm se} = Ap + B \right)$					
工作拥有	A	В				
海宁1-3	0. 021 3	6. 105 1				
海宁 2-2	0. 138	13.446				
海宁 2-4	0. 023 9	20.444				
王占 1-1	0.0105	4.0407				
王占1-4	0. 173 9	14.351				
王占 2-2	0.0013	5. 255 7				

2.4 土体模量与荷载关系分析

土体上覆压力为零时, *E*_s、*E*'_s、*E*_{se}均有初始值, 且不为零。从土体结构组成角度分析, 这是因为土 体由土颗粒和粒团按一定的结构组成, 土粒间具有 一定的支撑作用, 形成的土骨架受压后表现出抵抗 压缩变形的特征。由双电层理论可以得到土体具有 初始卸荷模量的结论。由试验结果可得, 回弹模量 随压力增大而变化速率比压缩模量(或再压缩模

· 39 ·

水利水电科技进展,2013,33(S1) Tel:025-83786335 E-mail:jz@hhu.edu.cn http://kkb.hhu.edu.cn

量)变化大得多,说明土体内部含水率的变化对压 缩模量(再压缩模量)的影响不及其对回弹模量的 影响。这主要是由于随着含水率下降,土体内部吸 水所占比例增大,而吸水的作用是使土颗粒间的黏 结更加坚固。

3 结 语

对取自嘉绍高速公路路基的原状土样进行了含 水率等常规物理力学性质试验,通过试验获得了试 验土样的物理性质及力学性质指标,为路基的设计、 变形及稳定计算与分析提供参数。

根据超载预压处理地基方法中存在的加载、卸载及再加载应力作用过程,进行单向固结试验。加载、卸载及再加载阶段,土体模量与压力关系表现出不同的变化规律。加载阶段及再加载阶段土体模量 与压力关系近似为线性变化,卸载阶段的回弹模量

(上接第25页)

	表4 各	持征部位最	大振动位移	mm
结构 部位	方向	正常运行 工况	半数磁极 短路工况	两相 短路工况
定子基础	水平向	0.012	0.059	0.024
截面	竖向	0.023	0.082	0.154
下机架	水平向	0.049	0.132	0.021
基础截面	竖向	0.036	0.027	0.009
机墩底部	水平向	0.024	0.145	0.022
截面	竖向	0.026	0.078	0.016
风罩	横流向	0.007	0.016	0.011
	顺流向	0.007	0.019	0.011
	竖向	0.013	0.033	0.008
发电机层 楼板	横流向	0.007	0.016	0.011
	顺流向	0.005	0.019	0.013
	竖向	0.013	0.033	0.008
山戸士日	横流向	0.007	0.018	0.009
电飞光层楼板	顺流向	0.006	0.023	0.015
19.10	竖向	0.012	0.030	0.009

注:水平向动位移是指水平横向位移与扭转动位移之和。 结果可知,两相短路工况下,定子基础板位置竖向振动位移最大值为 0.154 mm,略微超出了规范限值 0.15 mm,其他部位的振动位移均未超过规范要求。 因此该水电站厂房结构在机组振动荷载下的动力响 应满足规范要求。

该水电站厂房结构在机组振动荷载下的最大动 位移、最大振动速度、最大振动加速度均满足厂房结 构振动控制标准。由于在接头等刚度相差较大部位 易发生异步振动,该部位动应力较大,但均未超过材 随压力呈二次曲线变化规律,随压力的变化速率较 加载及再加载时模量随压力的变化率大,反映了土 体组成结构中,土颗粒间表现相互吸引的特点。

参考文献:

- [1] 朱向荣,潘秋元. 超载卸除后地基变形的研究[J]. 浙江 大学学报:自然科学版,1991,25(2):246-256.
- [2] 徐立新. 公路软土路堤预抛高的分析和计算[J]. 东南大 学学报,2000,30(3):126-131.
- [3] 张光永,王靖涛,卫军,等. 超载预压法的卸载控制理论 研究[J]. 岩土力学,2007(6):1250-1254.
- [4] 张光永,王靖涛,徐辉.超载预压法的超载比及卸载控制 研究[J]. 华中科技大学学报:城市科学版,2003(4):37-39.
- [5] 张光永,吴玉山,李彰明. 超载预压法阈值问题的室内试 验研究[J]. 岩土力学,1999(1):79-83.

(收稿日期:2012-12-11 编辑:胡新宇)

料的设计强度。该水电站厂房发电机层和电气夹层 楼板较厚,刚度较大,改善了楼板的振动特性。在厂 房布置时,机墩风罩上游与围岩的连接,并且上游墙 支护锚杆外露 50 cm,与机墩风罩钢筋焊接,加强了 机墩、风罩与上游侧围岩连接,增大了机墩风罩的刚 度,改善了厂房振动特性。

4 结 语

目前,运行水头高、单机容量大的水电站越来越 多,大型水电站厂房结构形式复杂、规模巨大,导致 厂房结构振动问题日益突出。本文选取一个完整的 典型机组段,考虑围岩参振并与厂房结构一起建立 了有限元耦合模型,模拟了厂房内部的主要结构和 孔洞,并且模拟无限地基的弹性回复性能。模型足 够精细,保证了计算结果的可靠性。该水电站厂房 结构不与常见机组振源激励发生共振,机组振动作 用下动力响应满足要求,厂房结构设计安全、合理。

参考文献:

- [1] 张运良,大型水电站蜗壳及厂房结构动力分析问题探讨 [J].水利水电科技进展,2010,30(6):20-25.
- [2] 马震岳,董毓新.水电站机组及厂房振动的研究与治理 [M].北京:中国水利水电出社,2004.
- [3] SL 266—2001 水电站厂房设计规范[S].

(收稿日期:2013-03-18 编辑:骆超)