基于我国湖库富营养化评价标准和RBF、GRNN、BP、Elman神经网络算法原理,分别构建RBF等4种神经网络湖库富营养化等级评价模型,采用内插法构造网络训练样本,把我国湖库富营养化评价等级临界值作为评价样本进行“预测”,将“预测”结果作为湖库富营养化程度评价等级的划分依据,对全国24个主要湖库富营养化程度进行评价。结果表明:RBF、GRNN、BP、Elman神经网络模型对全国24个主要湖库富营养化程度评价结果基本相同,表明研究建立的RBF等4种神经网络湖库富营养化程度评价模型和评价方法均是合理可行的,其评价精度高,可为湖库富营养化程度评价提供新的途径和方法。同BP和Elman网络算法相比,RBF与GRNN神经网络模型不仅对湖库富营养化程度评价结果完全相同,且模型具有收敛速度快、预测精度高、调整参数少(只有SPREAD参数),不易陷入局部极小值等优点,可以更快地预测评价网络,具有较大的计算优势。
崔东文.几种神经网络模型在湖库富营养化程度评价中的应用[J].水资源保护,2012,28(6):12-18.(.[J]. Water Resources Protection,2012,28(6):12-18.(in Chinese))