基于传统BP人工神经网络模型训练速度慢、参数选择困难、易陷入局部极值等问题,提出极限学习机(ELM)的水质预测模型。以云南某水库为例,选取NH3-N、NO2--N、NO3--N、CODMn和水体透明度作为网络输入,TP、TN作为输出, 构建基于ELM的湖库TP、TN预测模型,并将ELM预测结果与传统BP、GA-BP、RBF人工神经网络模型模拟结果进行比较。结果表明,ELM模型预测精度高于传统BP和RBF模型模拟结果,甚至略高于GA-BP模型的预测精度,并且ELM模型具有参数选择简便、训练速度快、不会陷入局部最优值等特点,有着较大的计算优势。
崔东文.极限学习机在湖库总磷、总氮浓度预测中的应用[J].水资源保护,2013,29(2):61-66.(CUI Dongwen. Application of extreme learning machine to total phosphorus and total nitrogen forecast in lakes and reservoirs[J]. Water Resources Protection,2013,29(2):61-66.(in Chinese))