物元模型在新疆水资源承载力综合评价中的应用

汤亚林1,朱帅帮2

(1. 塔里木大学农业工程学院 新疆 阿拉尔 843300; 2. 石河子市巴音沟河道管理处 新疆 石河子 832116)

摘要 采用物元分析法建立了区域地下水资源承载力的评价模型 并用该模型对新疆的地下水资源承载力进行综合评价。评价结果为新疆的地下水资源承载力属于Ⅲ级 已接近饱和值 进一步开发利用的潜力较小。

关键词 地下水资源 承载力 评价指标 新疆

中图分类号:TV213.9

文献标识码:A

文章编号:1004-6933(2006)03-0040-03

Application of matter-element model to the evaluation of water resources carrying capacity in Xinjiang

TANG Ya-lin¹, ZHU Shuai-bang²

(1. School of Agricultural Engineering , Tarimu University , Alar 843300 , China ; 2. Department of River Management of Bayingou in Shihezi City , Shihezi 832116 , China)

Abstract Based on the matter-element model, a groundwater carrying capacity evaluation model was established and applied to the evaluation of groundwater carrying capacity in Xijiang. It is concluded that the capacity there is of class ||||, which approaches to the saturation value. There is little potential for further exploitation and utilization.

Key words 'groundwater resources ; carrying capacity ; evaluating index ; Xinjiang

水资源承载力一般是指在一定的技术经济水平和社会生产条件下,水资源可最大供给工农业生产、居民生活用水和生态环境保护等用水的能力,也即水资源最大开发容量,在这个容量下水资源可以自然循环和更新,并不断地被人们利用,造福于人类,同时不会造成环境恶化^{1]}。水资源作为区域经济发展的基础资源之一,应合理加以开发,加强保护。为了水资源的可持续利用,就要对区域的农业水资源承载力进行合理、全面地评价,为经济决策提供科学依据¹⁻²]。

影响区域水资源承载力的因素很多,各因素之间相互作用、影响和制约,以不同的特征和相互组合对地下水资源承载力进行评价,其评价结果常常具有矛盾性、不确定性和不相容性^{2]}。我国学者蔡文教授提出的物元分析理论 是研究解决矛盾问题的规律和方法。它以促进事物转化、解决不相容问题为核心,适用于多因子的评价问题。本文对新疆农业水资源承载力的数据进行关联分析,建立用于综合评价区域农

业水资源承载力的物元模型。

1 物元模型的建立

1.1 基本模型

给定事物的名称 N , 它关于特征 c 的量值为 v , 以有序三元 $\mathbf{R} = (N,c,v)$)组作为描述事物的基本元 简称物元 [3]。如果事物 N 有多个特征 , 它以 n 个特征 c_1 , c_2 , ... , c_n 和相应的量值 v_1 , v_2 , ... , v_n 描述 则表示为

$$\boldsymbol{R} = \begin{bmatrix} N & c_1 & v_1 \\ & c_2 & v_2 \\ & & & \\ & c_n & v_n \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \\ R_n \end{bmatrix}$$

这时 称 R 为 n 维物元 ,简记为 R = (N, C, V).

1.2 经典域与节域物元矩阵

当 N_0 为标准事物 ,关于特征 c_i 量值范围 v_{0i} = [a_{0i} , b_{0i}]时 ,经典域的物元矩阵可表示为

作者简介:汤亚林(1957—),男,河南永城人,副教授,主要从事农业水资源、水利工程及建筑方面的教学与研究工作。E-mail:

$$\boldsymbol{R}_{0} = (\ N_{0} \ , C \ , V_{0} \) = \begin{bmatrix} N_{0} & c_{1} & [\ a_{01} \ , b_{01} \] \\ & c_{2} & [\ a_{02} \ , b_{02} \] \\ & & & \\ & c_{n} & [\ a_{0n} \ , b_{0n} \] \end{bmatrix}$$

若由标准事物 N_0 加上可转化为标准的事物所组成的物元 \mathbf{R}_p 称为节域物元 则 $v_p = [a_{pi}, b_{pi}]$ 为节域物元关于特征 c_i 的比相应标准扩大了的量值范围。节域物元矩阵表示为

$$\boldsymbol{R}_{p} = (N_{p}, C, V_{p}) = \begin{bmatrix} N_{p} & c_{1} & [a_{p1}, b_{p1}] \\ & c_{2} & [a_{p2}, b_{p2}] \\ & & \\ & c_{n} & [a_{pn}, b_{pn}] \end{bmatrix}$$

显然,这里有[a_{0i} , b_{0i}] \subset [a_{pi} , b_{pi}],i=1,2,

1.3 关联函数及关联度的计算

关联函数表示物元的量值取值为实轴上一点时,物元符合要求的范围程度。由于可拓集合的关联函数可用代数式来表达,就使得解决不相容问题能够定量化。令有界区间 $x_0 = [a,b]$ 的模定义为

$$|x_0| = |b - a|$$

某一点 x 到区间 $x_0 = [a, b]$ 的距离为

$$\rho = (x_j x_0) = |x - \frac{1}{2}(a + b)| - \frac{1}{2}(b - a)$$
(1)

则关联函数 K(x) 定义为

$$K(x) = \begin{cases} \frac{-\rho(x, x_0)}{|x_0|} & x \in x_0 \\ \frac{\rho(x, x_0)}{\rho(x, x_p) - \rho(x, x_0)} & x \notin x_0 \end{cases}$$
(2)

式中 : $_{A}(x_{1},x_{0})$ 为点 x_{1} 与有限区间 x_{0} =[a_{1},b_{1}]的距离 ; $_{A}(x_{1},x_{p})$ 为点 x_{1} 与有限区间 x_{p} =[a_{p},b_{p}]的距离 ; $_{A}(x_{1},x_{0},x_{p})$ 分别为待评物元的量值、经典域物元的量值范围和节域物元的量值范围。

1.4 评价标准

关联函数 K(x)的数值表示评价单元符合某标准范围的隶属程度。当 $K(x) \ge 1.0$ 时,表示被评价对象超过标准对象上限,数值愈大,开发潜力愈大;当 $0 \le K(x) \le 1.0$ 时,表示被评价对象符合标准对象要求的程度,数值愈大,愈接近标准上限;当 $-1.0 \le$

K(x) < 0 时,表示被评价对象不符合标准对象要求,但具备转化为标准对象的条件,且值愈大,愈易转化;当 $K(x) \le -1.0$ 时,表示被评价对象不符合标准对象要求,且又不具备转化为标准对象的条件。

1.5 事物的综合关联度和质量等级评定

待评事物 N_x 关于等级j 的综合关联度

$$K_{f}(N_{x}) = \sum_{i=1}^{n} \alpha_{i} K_{f}(x_{i})$$
 (3)

式中 : $K_j(N_x)$ 为待评事物关于等级 j 的综合关联度 ; $K_j(x_i)$ 为待评事物关于各等级的关联度(j=1,2,... n); α_i 为各评价指标的权系数。若

$$K_{j0} = \max(K_j(N_x))$$

则评定事物 N_x 属于等级 j_0 。

2 实例分析

目前新疆农业用水的比例已占到 90%。一方面,由于干旱缺水,造成土地沙漠化、次生盐碱化、水土流失、草原旱化矮化;而另一方面水资源又在大量浪费,耕地用水量高达 28 600 m³/hm²,水资源开发利用引发的生态环境问题几乎均与农用水资源有关。农用水资源的浪费问题、水资源管理及水环境问题已不容忽视。

2.1 评价指标与分级标准[4]

影响区域水资源承载力的因素很多:既有供水方面的又有需水方面的;既有直接又有间接因素。根据指标体系的完全性原则、简捷易得性原则、相对独立性原则和客观性原则,参照全国水资源供需分析中的指标体系 56 和一些关于水资源评价指标体系的研究成果 $^{7-11}$ 。选取了 9 个相对性评价指标:耕地灌溉率 1 ,水资源利用率 1 2,地表水资源开发利用程度 1 3,地下水资源开发程度 1 4,供水模数 1 5,需水量模数 1 6,灌溉用水指标 1 7,生态环境用水率 1 8、渠系水利用系数 1 9。

根据文献 11 把 9 个评价指标对水资源承载力影响的程度划分为 3 个等级。其中 I 级表示该区仍有较大的承载力 ,II 级表示该区水资源开发利用已有相当规模 ,但仍有一定的开发利用潜力 ,III 级表示水资源的承载力已接近饱和值 ,进一步开发利用的潜力较小 ,评价标准和新疆农业水资源的评价指标特征值 11 J见表 1。

表 1 综合评价标准指标及新疆地区评价结果

评价因素	$I_1/\%$	$I_2/\%$	$I_3/\%$	$I_4/\%$	I ₅ 人万 m ³ ⋅km ⁻²)	I ₆ 人万 m ³ ⋅km ⁻²)	I ₇ 人万 m ³ ⋅km ⁻²)	$I_{8}/\%$	I_9
Ι	20	50	50	30	10	10	0.9	25	0.35
Π	20 ~ 60	50 ~ 75	50 ~ 75	30 ~ 70	10 ~ 60	10 ~ 60	$0.4500 \sim 0.9$	15 ~ 25	$0.35 \sim 0.7$
Ш	60	75	70	70	60	60	0.45	15	0.7
新疆	89	79	53	7.9	10.10	70	1.2	23	0.6

2.2 评价物元模型

a. 确定经典物元矩阵

根据表 1 取 $1 \sim 11$ 级评价标准对应的取值范围作为经典域 $R_{01} \sim R_{03}$ 。

$$\mathbf{R}_{01} = \begin{bmatrix} \mathbf{I} & I_1 & [\ 0 \ 20 \] \\ I_2 & [\ 0 \ 50 \] \\ I_3 & [\ 0 \ 50 \] \\ I_4 & [\ 0 \ 30 \] \\ I_5 & [\ 0 \ ,10 \] \\ I_6 & [\ 0 \ ,10 \] \\ I_7 & [\ 0.9 \ ,1.2 \] \\ I_8 & [\ 25 \ 30 \] \\ I_9 & [\ 0 \ 0.35 \] \end{bmatrix} \quad \mathbf{R}_{02} = \begin{bmatrix} \mathbf{II} & I_1 & [\ 20 \ 60 \] \\ I_2 & [\ 50 \ ,75 \] \\ I_3 & [\ 50 \ ,75 \] \\ I_4 & [\ 30 \ ,70 \] \\ I_5 & [\ 10 \ 60 \] \\ I_6 & [\ 10 \ 60 \] \\ I_7 & [\ 0.45 \ 0.9 \] \\ I_8 & [\ 15 \ 25 \] \\ I_9 & [\ 0.35 \ 0.7 \] \end{bmatrix}$$

$$\mathbf{R}_{03} = \begin{bmatrix} \begin{bmatrix} \mathbf{I} \\ & I_1 \\ & I_2 \\ & [75,100] \end{bmatrix} \\ & I_3 \\ & [70,100] \\ & I_4 \\ & [70,100] \end{bmatrix} \\ & I_5 \\ & [60,80] \\ & I_6 \\ & [60,80] \\ & I_7 \\ & [0,0.45] \\ & I_8 \\ & [0,15] \\ & I_9 \\ & [0.7,1.0] \end{bmatrix}$$

b. 确定节域物元

根据表 1 中评价因子的取值范围来确定节域 R_n 。

$$\mathbf{R}_{P} = \begin{bmatrix} I \sim & \text{III} & I_{1} & [\ 0 \ ,100 \] \\ I_{2} & [\ 0 \ ,100 \] \\ I_{3} & [\ 0 \ ,100 \] \\ I_{4} & [\ 0 \ ,100 \] \\ I_{5} & [\ 0 \ ,80 \] \\ I_{6} & [\ 0 \ ,80 \] \\ I_{7} & [\ 0 \ ,1.2 \] \\ I_{8} & [\ 0 \ ,50 \] \\ I_{9} & [\ 0 \ ,1.0 \] \end{bmatrix}$$

c. 计算权系数

对于评价等级 N_i (i=1 , 2 ,... ,n)门限值 x_{ij} 的 权系数为

$$\alpha_{ij} = \mathbf{x}_{ij} / \sum_{i=1}^{n} \mathbf{x}_{ij}$$
 ($i = 1, 2, 3, ij = 1, 2, ..., 9$) 计算的权系数见表 2。

d. 综合关联度及评价结果

根据公式(1)(2)(3)计算新疆的综合关联度,见表3。由表3可以看出,新疆水资源的承载力为Ⅲ级,已接近饱和值,进一步开发利用的潜力较小,该

评价结果与文献 11]中的评价结果相一致。

表 2 权系数

α_{ij}	α_{1j}	α_{2j}	α_{3j}	α_{ij}	α_{1j}	α_{2j}	α_{3j}
α_{i1}	0.1019	0.1307	0.1459	α_{i6}	0.0510	0.1143	0.1459
α_{i2}	0.2548	0.2041	0.1824	α _{i7}	0.0046	0.0021	0.0011
α_{i3}	0.2548	0.2041	0.1703	α_{i8}	0.1274	0.0653	0.0365
α_{i4}	0.1529	0.1307 0.2041 0.2041 0.1633	0.1703	α_{i9}	0.0018	0.0016	0.0017
α_{i5}	0.0510	0.1143	0.1459				

表 3 综合关联度

承载力级别	Ι	II	Ш
$k(N_x)$	-0.2839	- 0.2687	-0.1962

3 结 论

- a. 物元模型计算方法简便 ,容易进行计算机编程。模型的关联函数可以取负值 ,这样该方法可以全面地分析待评价对象属于某一等级的程度 ,使评价结果更为准确 ,因此用来综合评价区域水资源承载力是合理可行的。
- b. 利用物元模型对新疆的水资源承载力进行评价,得出了新疆的水资源承载力为Ⅲ级,评价结果符合实际情况,为水资源开发利用和保护而做短期、长期规划提供了比较客观的依据,为区域经济的发展奠定了基础。

参考文献:

- [1]付强.农业水土资源系统分析与综合评价[M].北京:中国水利水电出版社 2005.
- [2]门宝辉,王志良,梁川,等.物元模型在区域地下水资源 承载力综合评价中的应用[J].四川大学学报:工程科学版 2003 35(1) 34-37.
- [3]蔡文.物元模型及其应用[M].北京 科学技术文献出版社、1994.
- [4] 张鑫, 王纪科, 蔡焕杰, 等. 区域地下水资源承载力综合评价研究 J]. 水土保持通报 2001 21(3) 24-27.
- [5]施嘉场,水资源综合利用[M].北京:中国水利水电出版社,1995.
- [6]水利电力部水文局,中国水资源评价[M],北京:水利电力出版社,1987.
- [7]潘理中,金懋高.中国水资源与世界各国水资源统计指标的比较 J].水科学进展,1996 次4)376-380.
- [8] 左东启,戴树声,袁汝华,等,水资源评价指标体系的研 穷],], 水科学进展, 1996, 7(4) 367-373.
- [9]黑龙江省水文总站,区域水资源分析计算方法[M].北京 水利电力出版社 1987.
- [10]金光炎.平原地下水资源评价[M].北京:水利出版社,
- 1992. [11]张红丽 陈旭 雷海章 等.新疆农业水资源可持续利用

能力的评价[J]. 新疆农垦经济 2004(2) 22-25.

(收稿日期 2005-07-20 编辑:舒 建)