基于流域日降水量图的相似性搜索方法
作者:
作者单位:

(1.河海大学计算机与软件学院,江苏 南京211100;2.长江水利委员会水文局,湖北 武汉 443010 )

作者简介:

余宇峰(1979—),男,副教授,博士,主要从事智能数据处理、数据质量控制和智能洪水预报研究。E-mail:yfyu@hhu.edu.cn

中图分类号:

TP39

基金项目:

国家重点研发计划项目(2021YFB3900605);江苏省水利科技项目(2021065,2020014)


A rainfall similarity search method based on daily precipitation images of watershed
Author:
Affiliation:

(1.College of Computer Science and Software, Hohai University, Nanjing 211100, China;2.Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 443010, China )

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    为了提升降水量图相似性分析的精确度,提出了一种基于流域日降水量图的相似性搜索方法,该方法从降雨图像中提取日降水量、降雨空间分布和降雨中心特征,并分别计算各特征的相似距离,同时通过提出的归一化折旧累积增益改进粒子群优化的集合加权方法对3个特征的相似距离进行加权融合,作为降雨图像的相似性度量。嘉陵江流域实例验证表明:该方法能够更好地表征降水量图的时空特征,可快速地从降水量图中检索出相似的降雨过程。

    Abstract:

    In order to improve the accuracy of similarity analysis of precipitation images, a rainfall similarity search method based on daily precipitation images of watershed is proposed. The algorithm first extracts the daily precipitation, precipitation distribution, precipitation center characteristics of the precipitation images, and calculates the similarity distance of each characteristic respectively. Then, an ensemble weighting method of normalized discounted cumulative gain-improved particle swarm optimization is proposed to weight and fuse the three extracted features as the similarity measure of precipitation image. The similarity search experiments of daily precipitation images on the Jialing River Basin illustrate that the method proposed in this paper can better characterize the spatiotemporal characteristics of the precipitation image and quickly discover similar rainfall processes from precipitation images.

    参考文献
    相似文献
    引证文献
引用本文

余宇峰,贺新固,张潇,等.基于流域日降水量图的相似性搜索方法[J].河海大学学报(自然科学版),2024,52(2):19-27.(YU Yufeng, HE Xingu, ZHANG Xiao, et al. A rainfall similarity search method based on daily precipitation images of watershed[J]. Journal of Hohai University (Natural Sciences),2024,52(2):19-27.(in Chinese))

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-14
  • 在线发布日期: 2024-03-25