高拱坝参数反演的Jaya-高斯过程回归模型
作者:
作者单位:

(1.大连理工大学水利工程学院,辽宁 大连116024;2.吉林省水利水电勘测设计研究院,吉林 长春130021;3.南方电网调峰调频发电有限公司,广东 广州510630 )

作者简介:

马建婷(1997—),女,硕士研究生,主要从事大坝安全监测与分析研究。E-mail:majianting1019@163.com

中图分类号:

TV642.4

基金项目:

国家自然科学基金(52079022);中央高校基本科研业务费专项(DUT19LK14);南方电网调峰调频发电有限公司项目(0200002019030304SG00003)


Jaya-Gaussian process regression model for parameter inversion of high arch dams
Author:
Affiliation:

(1.School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China;2.Jilin Province Water Resources and Hydropower Consultative Company, Changchun 130021, China;3.China Southern Power Grid Peak and Frequency Regulation Power Generation Co.,Ltd., Guangzhou 510630, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
  • 文章评论
    摘要:

    为了提高高拱坝物理力学参数反演的精度及效率,将Jaya智能优化方法与高斯过程机器学习理论引入大坝安全监控领域,提出了基于Jaya-高斯过程回归代理模型的拱坝参数反演分析方法。采用高斯过程回归代理模型代替传统的有限元计算,并利用3种智能优化算法进行参数寻优。结果表明:Jaya算法相比于PSO算法、GWO算法,不仅反演精度高、收敛速度快,且具有很好的稳定性;所提出反分析策略在反演用时方面比直接调用有限元计算的反分析方法节省80%以上。本文方法不仅能够满足计算精度要求,且大大缩减了计算时间,为高拱坝物理力学参数反演分析提供了一种高效的方法。

    Abstract:

    In order to improve the accuracy and efficiency for the inverse of physical and mechanical parameters of high arch dams, Jaya algorithm and Gaussian process machine learning theory were introduced into the field of dam safety monitoring, and an arch dam parameter inverse analysis method based on the Jaya-Gaussian process regression surrogate model was proposed. The Gaussian process regression surrogate model was used instead of the traditional finite element calculation, and three intelligent optimization algorithms were used to optimize the parameters. The results show that compared with PSO and GWO algorithm, Jaya algorithm not only has high inversion accuracy, fast convergence speed, and good stability, but also has good stability, and the proposed inverse analysis strategy saves more than 80% time compared with the inverse analysis method that directly calls finite element calculation. This method can not only meet the requirements of calculation accuracy, but also greatly reduce the calculation time, providing an efficient method for the inverse analysis of physical and mechanical parameters for high arch dams. Keywords: high arch dam; displacement inverse analysis; Gaussian process regression; surrogate model; Jaya algorithm 〖FL

    参考文献
    引证文献
引用本文

马建婷,康飞,姜成磊,等.高拱坝参数反演的Jaya-高斯过程回归模型[J].水利水电科技进展,2022,42(4):74-79.(MA Jianting, KANG Fei, JIANG Chenglei, et al. Jaya-Gaussian process regression model for parameter inversion of high arch dams[J]. Advances in Science and Technology of Water Resources,2022,42(4):74-79.(in Chinese))

复制
分享
文章指标
  • 点击次数:212
  • 下载次数: 890
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-07-05
  • 在线发布日期: 2022-07-07