陕西省月用水量预测方法研究
作者:
作者单位:

(1.河海大学水文水资源学院,江苏 南京210098;2.河海大学水灾害防御全国重点实验室,江苏 南京210098;3.河海大学长江保护与绿色发展研究院,江苏 南京210098;4.南京水利科学研究院水文水资源研究所,江苏 南京210029 )

作者简介:

陈星(1980—),女,副教授,博士,主要从事水文学及水资源研究。E-mail:77574471@qq.com

中图分类号:

TV213.4

基金项目:

国家自然科学基金项目(52209031);中央级公益性科研院所基本科研业务费专项资金项目(Y522001,Y522018,Y520009);山东省重点研发计划项目(2023CXGC010905)


Research on monthly water consumption prediction methods in Shaanxi Province
Author:
Affiliation:

(1.College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;2.The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China;3.Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China;4.Hydrology and Water Resources Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    基于国家水资源管理信息系统的月用水量数据分析,选用ARIMA模型、BP神经网络模型以及经过遗传算法(GA)优化的BP神经网络模型(GA-BP神经网络模型)进行月用水量模拟。在构建BP神经网络模型过程中,通过多源社会经济数据的整合与分析,采用平均影响值算法(MIV)和皮尔逊相关系数联合方法筛选月用水量的关键影响因子。研究结果表明,三种模型在陕西省月用水量预测中均表现出较高的精度,其中GA-BP神经网络模型的预测精度最高。为进一步验证影响因子对模拟结果的影响,采用不同方法筛选影响因子作为GA-BP神经网络模型的输入,模拟结果表明,MIV和皮尔逊相关系数联合方法提高了影响因子的选取精度,能够有效提升GA-BP神经网络模型的模拟性能。

    Abstract:

    Based on analysis of the monthly water consumption data from the national water resource management information system, the ARIMA model, the BP neural network model and the BP neural network model optimized by the genetic algorithm (the GA-BP neural network model) were used for monthly water consumption simulation. In the process of constructing the BP neural network model, the combined method of mean impact value algorithm (MIV) and Pearson correlation coefficients was used to screen the key influencing factors of monthly water consumption through the integration and analysis of multi-source socio-economic data. The research results show that all three models exhibit relatively high accuracy in the monthly water consumption prediction in Shaanxi Province, among which the GA-BP neural network model has the highest prediction accuracy. To further verify the impact of influencing factors on the simulation results, different methods were used to screen the influencing factors as the input of the GA-BP neural network model. The simulation results indicate that the combined method of MIV and Pearson correlation coefficients improves the selection accuracy of influencing factors and can effectively enhance the simulation performance of the GA-BP model.

    参考文献
    相似文献
    引证文献
引用本文

陈星,沈紫菡,许钦,等.陕西省月用水量预测方法研究[J].水利水电科技进展,2025,45(1):73-78.(CHEN Xing, SHEN Zihan, XU Qin, et al. Research on monthly water consumption prediction methods in Shaanxi Province[J]. Advances in Science and Technology of Water Resources,2025,45(1):73-78.(in Chinese))

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-21
  • 在线发布日期: 2025-01-24