基于M-ELM的大坝变形安全监控模型
作者:
中图分类号:

TV698.1

基金项目:

中国博士后基金(2015M572656XB);陕西省自然科学基础研究计划(2018JZ5010)


A safety monitoring model of dam deformation based on M-ELM
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
  • 文章评论
    摘要:

    针对大坝变形监测数据存在的非线性强、异常值诊断和剔除工作复杂及传统监控模型抗粗差能力差等问题,结合稳健估计理论抗粗差性强和极限学习机在处理非线性问题方面的优势,建立了基于稳健估计极限学习机的大坝变形安全监控模型。试验确定网络隐含层层数,构建4次方损失函数,采用加权最小二乘法计算输出权值,实现原始监测数据的拟合和预测。以某工程大坝变形监测数据为例进行建模分析,结果表明:以反映模型预测精度的均方误差和平均绝对百分误差及反映模型鲁棒性的中位数绝对偏差作为评价指标,基于稳健估计极限学习机的大坝变形安全监控模型的各项指标明显优于对比模型。

    Abstract:

    Aiming at the problems of strong nonlinearity, complexity of diagnosing and eliminating abnormal values, and poor ability to resist gross errors of traditional monitoring models for the analysis of dam deformation monitoring data, a dam deformation monitoring model based on robust estimate extreme learning machine(M-ELM)was established. It combines the theory of robust estimation which has strong roughness tolerance with the extreme learning machine which has strong ability in dealing with nonlinear problems. The network number of the hidden layers was determined by tests and a fourth power loss function was built. A weighted least square method was used to calculate the output weights, and the fitting and prediction of the original monitoring data was carried out. The monitoring data of a certain dam deformation was taken as an example for modeling analysis. The mean square error and the mean absolute percentage error reflecting the prediction accuracy, and the median absolute deviation representing the model robustness were taken as the evaluation indexes. The results show that each index of the dam deformation monitoring model based on robust estimate extreme learning machine is superior to other models.

    参考文献
    [1] 杨令强,马静,高蕊.土石坝加固前后的监测分析及监控模型[J].水利学报,2015,46(增刊1):70-73.(YANG Lingqiang, MA Jing, GAO Rui. Monitoring analysis and monitoring model of earth rock dam before and after reinforcement[J]. Journal of Hydraulic Engineering, 2015, 46(Sup1): 70-73.(in Chinese))
    [2] 顾冲时,吴中如.大坝与坝基安全监控理论和方法及其应用[M].南京:河海大学出版社,2006.
    [3] 吴中如,陈波.大坝变形监控模型发展回眸[J].现代测绘,2016,39(5):3-8.(WU Zhongru, CHEN Bo. Review on development of dam deformation monitoring model[J]. New Mapping, 2016, 39(5): 3-8.(in Chinese))
    [4] 胡德秀,郭盼,陈诗怡,等.基于最小截平方和估计的监测数据分析方法[J].数理统计与管理,2017,36(4):632-640.(HU Dexiu, GUO Pan, CHEN Shiyi, et al. Analysis method of a water engineering safety monitoring date based on the least trimmed square estimation[J]. Journal of Applied Statistics and Management, 2017, 36(4): 632-640.(in Chinese))
    [5] LÉGER P, SEYDOU S. Seasonal thermal displacements of gravity dams located in northern regions[J]. Journal of Performance of Constructed Facilities, 2009, 23(3): 166-174.
    [6] 杨杰,胡德秀,吴中如.大坝安全监控模型因子相关性及不确定性研究[J].水利学报,2004,35(12):99-105.(YANG Jie, HU Dexiu, WU Zhongwu. Multiple co-linearity and uncertainty of factors in dam safety monitoring model[J]. Journal of Hydraulic Engineering, 2004,35(12): 99-105.(in Chinese))
    [7] 程琳,徐波,吴波,等.大坝安全监测的混合回归模型研究[J].水电能源科学,2010,28(3):48-50.(CHENG Lin, XU Bo, WU Bo, et al. Research on mixed regression model of dam safety monitoring[J]. Water Resources and Power, 2010, 28(3): 48-50.(in Chinese))
    [8] 陆美霞.确定性模型在重力坝变形分析中的应用[J].灾害与防治工程,2009,16(1):16-20.(LU Meixia. Application of deterministic model in deformation analysis of dam[J]. Disaster and Control Engineering, 2009, 16(1): 16-20.(in Chinese))
    [10] 李端有,周元春,甘孝清.混凝土拱坝多测点确定性位移监控模型研究[J].水利学报,2011,42(8):981-985.(LI Duanyou, ZHOU Yuanchun, GAN Xiaoqing. Research on multiple points deterministic displacement monitoring model of concrete arch dam[J]. Journal of Hydraulic Engineering, 2011, 42(8): 981-985.(in Chinese))
    [11] 胡德秀,米艳芳,杨杰,等.突变综合评价理论在滑坡体安全分析中的应用[J].西北农林科技大学学报(自然科学版),2017,45(5):228-234.(HU Dexiu, MI Yanfang, YANG Jie, et al. Application of catastrophe comprehensive assessment theory in landslip safety analysis[J]. Journal of Northwest A & F University(Natural Science Edition), 2017, 45(5): 228-234.(in Chinese))
    [12] 许昌,岳东杰,董育烦,等.基于主成分和半参数的大坝变形监测回归模型[J].岩土力学,2011,32(12):738-3742.(XU Chang, YUE Dongjie, DONG Yufan, et al. Regression model of dam deformation monitoring based on principal components and semi-parameters[J]. Rock and Soil Mechanics, 2011, 32(12): 3738-3742.(in Chinese))
    [13] 裴亮,吴震宇,崔萌,等.高土石坝安全监测位移混合模型研究及应用[J].四川大学学报(工程科学版),2012,44(增刊1):42-47.(PEI Liang, WU Zhenyu, CUI Meng, et al. Research and application on the displacement hybrid-model of high earth dam[J]. Journal of Sichuan University(Engineering Science Edition), 2012, 44(Sup1): 42-47.(in Chinese))
    [14] 刘贝贝,张岚,金秋.基于位移场混合模型的棉花滩大坝弹性模量反演分析[J].水力发电,2010,36(3):55-58.(LIU Beibei, ZHANG Lan, JIN Qiu. Back analysis on the elastic modulus of mianhuatan dam based on displacement field hybrid model[J]. Water Power, 2010, 36(3): 55-58.(in Chinese))
    [15] 苏怀智,温志萍,吴中如,等.大坝安全性态的非线性组合监控[J].水利学报,2005,36(2):197-202.(SU Huaizhi, WEN Zhiping, WU Zhongru, et al. Nonlinear combination monitoring of dam safety[J]. Journal of Hydraulic Engineering, 2005, 36(2): 197-202.(in Chinese))
    [16] 谢朋朋,黄腾,刘阳.变权组合预测模型在大坝沉降监测中的应用[J].测绘工程,2015,24(4):74-76.(XIE Pengpeng, HUANG Teng, LIU Yang. Application of changeable weight combination forecasting model to dam settlement predicting[J]. Engineering of Surveying and Mapping, 2015, 24(4): 74-76.(in Chinese))
    [17] 何自立,杨建国,靳国云,等.基于新维无偏灰色马尔可夫模型的大坝沉降预测研究[J].西北农林科技大学学报(自然科学版),2013,41(5):213-218.(HE Zili, YANG Jianguo, JIN Guoyun, et al. Dam settlement prediction besed on metabolism unbiased grey Markov model[J]. Journal of Northwest A & F University(Natural Science Edition), 2013, 41(5): 213-218.(in Chinese))
    [18] WANG Ziwei, LU Xiyao, SHEN Zhehui. Application of SVM model in dam deformation prediction[J]. Modern Surveying and Mapping, 2016, 2(16): 75-78.
    [19] 张豪,许四法.基于经验模态分解和遗传支持向量机的多尺度大坝变形预测[J].岩石力学与工程学报,2011,30(增刊2):3681-3688.(ZHANG Hao, XU Sifa. Multi-scale dam deformation prediction based on empirical mode decomposition and genetic support vector machine[J]. Journal of Rock Mechanics and Engineering, 2011, 30(Sup2): 3681-3688.(in Chinese))
    [20] 张磊,金永强,李子阳,等. CPSO-NN模型在大坝安全监控中的应用[J].水利水电科技进展,2008,28(4):8-10.(ZHANG Lei, JIN Yongqiang, LI Ziyang, et al. Application of CPSO-NN model in dam safety monitoring[J]. Advances in Science and Technology of Water Resources, 2008,28(4): 8-10.(in Chinese))
    [21] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
    [22] HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man & Cybernetics, 2012, 42(2): 513-529.
    [23] HAN H G, WANG L D, QIAO J F. Hierarchical extreme learning machine for feedforward neural network[J]. Neurocomputing, 2014, 128(5):128-135.
    [24] 范千,方绪华.考虑变形因子模式下基于正则化极限学习机的大坝变形预报方法[J].贵州大学学报(自然科学版),2015,32(6):57-61.(FAN Qian, FANG Xuhua. Dam deformation prediction method based on regularized extreme learning machine model under considering deformation factors mode[J]. Journal of Guizhou University(Natural Science Edition), 2015, 32(6): 57-61.(in Chinese))
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡德秀,屈旭东,杨杰,等.基于M-ELM的大坝变形安全监控模型[J].水利水电科技进展,2019,39(3):75-80.(HU Dexiu, QU Xudong, YANG Jie, et al. A safety monitoring model of dam deformation based on M-ELM[J]. Advances in Science and Technology of Water Resources,2019,39(3):75-80.(in Chinese))

复制
分享
文章指标
  • 点击次数:2017
  • 下载次数: 2120
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2019-05-27