基于GA-BP神经网络的碾压混凝土压实度实时评价方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TV642.2;TV523

基金项目:

中国电建集团科技创新项目(DJ-ZDXM-2016-09)


Real-time evaluation method of compaction degree for roller-compacted concrete based on GA-BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    针对碾压混凝土现场压实程度的实时工艺评价需求,选择含湿率、碾压层表面应力横波波速、级配以及胶砂比为预测参数,构建了GA-BP神经网络压实度预测模型;结合现场应用实例,验证该方法实时预测评价的有效性。结果表明:与BP神经网络模型比较,GA-BP神经网络模型不仅预测精度更高,而且偏差波动范围更小,稳定性好,能更准确有效地预测现场碾压层混凝土压实性;GA-BP神经网络模型对碾压混凝土压实度下限值更敏感,压实度处于93%~96%的样本点,模型预测值的平均误差仅为0.08%,最大误差仅为0.17%,预测精度很高。

    Abstract:

    Aiming at the requirements of the real-time process evaluation for the on-site compaction degree of roller-compacted concrete(RCC), prediction parameters such as the moisture content, the shear wave velocity on the surface of compacted fresh concrete, aggregate gradation, the ratio of cementitious material and sand are selected to construct a prediction model based on GA-BP neural network. The effectiveness of the proposed real-time evaluation method was validated by an on-site application case. The results show that compared with BP neural network models, GA-BP model has a higher prediction accuracy with a smaller range of deviation fluctuation and it can predict the real-time compaction degree of RCC accurately and effectively with higher stability. GA-BP model is more sensitive to the lower limit value of the compaction degree. For samples with the compaction degree ranging from 93% to 96%, the average error of the GA-BP model is only 0. 08% and the maximum one is only 0. 17%, revealing very high prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

田正宏,苏伟豪,郑祥,等.基于GA-BP神经网络的碾压混凝土压实度实时评价方法[J].水利水电科技进展,2019,39(3):81-86.(TIAN Zhenghong, SU Weihao, ZHENG Xiang, et al. Real-time evaluation method of compaction degree for roller-compacted concrete based on GA-BP neural network[J]. Advances in Science and Technology of Water Resources,2019,39(3):81-86.(in Chinese))

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-27
  • 出版日期: