共存阴离子对核酸阻锈剂在模拟混凝土孔溶液中钢筋阻锈作用的影响
作者:
中图分类号:

TU528.571

基金项目:

国家重点研发计划(2018YFC1508704);国家自然科学基金(51278167)


Effect of coexisting anions on corrosion of reinforced steel treated by DNA corrosion inhibitor in simulated concrete pore solution
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
  • 文章评论
    摘要:

    将一种含有长度在20~80个碱基的各种引物的混合溶液溶解在核酸缓冲液中作为核酸阻锈剂,通过线性极化和电化学阻抗谱(EIS)两种电化学手段分别研究共存阴离子HCO-3和SO2-4对核酸阻锈剂在模拟混凝土孔溶液中对钢筋氯盐腐蚀的影响。利用X射线光电子能谱(XPS)分析了在有共存阴离子存在的模拟混凝土孔溶液中钢筋电极在核酸阻锈剂作用下表面膜的组成结构。结果表明:核酸阻锈剂具有良好的钢筋防腐蚀效果,共存阴离子HCO-3的存在使钢筋的腐蚀速率加快,但核酸的加入能明显减弱钢筋腐蚀倾向,具有和商用阻锈剂(主要成分为磷酸钠)基本相同的阻锈效率;共存阴离子SO2-4的存在加快了钢筋的腐蚀速率,且SO2-4的浓度较低时核酸阻锈剂的阻锈效率已经超过了同等条件下的商用阻锈剂。

    Abstract:

    A deoxyribonucleic acid(DNA)corrosion inhibitor was prepared by dissolving a mixture of primers with a length of 20~80 bases in a nucleic acid buffer. Linear polarization and electrochemical impedance spectroscopy(EIS)were employed to investigate the effect of coexisting anions, HCO-3 and SO2-4, on the chloride-induced corrosion of reinforced steel in simulated concrete pore solution for the corrosion inhibition of DNA. After different treatments, X-ray photoelectron spectroscopy(XPS)was used to characterize the structure of the surface membrane of the reinforced steel. The results show that the DNA corrosion inhibitor has a good anticorrosive effect on the steel reinforcement. However, the presence of coexisting anion HCO-3 accelerates the corrosion rate of the reinforced steel. The addition of the DNA corrosion inhibitor alleviates the steel corrosion process and its rust inhibition efficiency is comparable to that of the commonly used commercial corrosion inhibitor(the main component is sodium phosphate). The presence of SO2-4 increases the corrosion rate of the reinforced steel, and its corrosion inhibiting efficiency is even higher than that of the commercial one under the same conditions.

    参考文献
    [1] 蒋林华. 混凝土材料学[M]. 南京: 河海大学出版社, 2006.
    [2] 刘大智,储洪强,蒋林华. 聚合物水泥砂浆的耐腐蚀性能[J].水利水电科技进展,2008,28(6):12-14.(LIU Dazhi, CHU Hongqiang, JIANG Linhua. Corrosion resistance of polymer cement mortar[J]. Advances in Science and Technology of Water Resources, 2008, 28(6):12-14.(in Chinese))
    [3] 彭艳周,高军,徐港,等. 盐冻融环境下钢筋混凝土结构锈蚀寿命预测[J].水利水电科技进展,2019,39(3):44-49.(PENG Yanzhou, GAO Jun, XU Gang, et al. Prediction for corrosion life of reinforced concrete structures under salt freeze-thaw environment[J].Advances in Science and Technology of Water Resources, 2019, 39(3):44-49.(in Chinese))
    [4] 蒋林华,白舒雅,徐金霞,等. 钢筋锈蚀氯离子临界浓度研究进展[J]. 水利水电科技进展, 2015, 35(5): 77-82.(JIANG Linhua, BAI Shuya, XU Jinxia, et al. Review on research of threshold chloride concentration of reinforcing steel corrosion in concrete[J]. Advances in Science and Technology of Water Resources, 2015, 35(5):77-82.(in Chinese))
    [5] 陈平,徐金霞,冯伟,等.聚羧酸减水剂对水泥浆结合氯离子性能的影响[J].河海大学学报(自然科学版),2019,47(1):48-54.(CHEN Ping,XU Jinxia,FENG Wei, et al.Influence of polycarboxylate superplasticizer on the chloride binding in cement paste[J].Journal of Hohai University(Natural Sciences),2019,47(1):48-54.(in Chinese))
    [6] 余其俊,费飞龙,韦江雄,等. 阳离子型咪唑啉阻锈剂的合成及防腐蚀性能术[J]. 华南理工大学学报(自然科学版), 2012, 40(10): 134-141.(YU Qijun, FEI Feilong, WEI Jiangxiong, et al. Synthesis of cationic imidazoline corrosion inhibitor and its corrosion inhibition performance[J]. Journal of South China University of Technology(Natural Science Edition),2012, 40(10): 134-141.(in Chinese))
    [7] 金伟良,吴航通,许晨,等. 钢筋混凝土结构耐久性提升技术研究进展[J].水利水电科技进展,2015,35(5):68-76.(JIN Weiliang, WU Hangtong, XU Chen, et al. Research progress on durability improvement technology of reinforced concrete structures[J]. Advances in Science and Technology of Water Resources, 2015, 35(5):68-76.(in Chinese))
    [8] 蒋正武,刑锋,孙振平,等. 电沉积法修复钢筋混凝土裂缝的基础研究[J].水利水电科技进展,2007,27(3):5-8.(JIANG Zhengwu, XING Feng, SUN Zhenping, et al. Basic research on repairing reinforced concrete cracks by electrodeposition[J]. Advances in Science and Technology of Water Resources, 2007, 27(3):5-8.(in Chinese))
    [9] AL-AMOUDI O S B, MASLEHUDDIN M, LASHARI A N, et al. Effectiveness of corrosion inhibitors in contaminated concrete[J]. Cement and Concrete Composites, 2003, 25(4/5): 439-449.
    [10] LEE H S, RYU H S, PARK W J, et al. Comparative study on corrosion protection of reinforcing steel by using amino alcohol and lithium nitrite inhibitors[J]. Materials, 2015,8(1):251.
    [11] GARCÉS P, SAURA P, MÉNDEZ A, et al. Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments of micropores of concrete in the propagation period[J]. Corrosion Science,2008, 50(2):498-509.
    [12] 马世豪,李伟华,郑海兵,等. 钢筋阻锈剂的阻锈机理及性能评价的研究进展[J]. 腐蚀与防护, 2017, 38(12):963-968.(MA Shihao, LI Weihua, ZHENG Haibing, et al. Research progress of anti-corrosion mechanism and performance evaluation of corrosion inhibitor steel bar[J]. Corrosion and Protection, 2017, 38(12):963-968.(in Chinese))
    [13] JIANG Shaobo, JIANG Linhua, WANG Zhuyin, et al. Deoxyribonucleic acid as an inhibitor for chloride-induced corrosion of reinforcing steel in simulated concrete pore solutions[J]. Construction and Building Materials, 2017, 150: 238-247.
    [14] JIANG Shaobo, GAO Song, JIANG Linhua, et al. Effects of deoxyribonucleic acid on cement paste properties and chloride-induced corrosion of reinforcing steel in cement mortars[J]. Cement and Concrete Composites, 2018,91: 87-96.
    [15] ZHOU J, CHEN X, CHEN S. Durability and service life prediction of GFRP bars embedded in concrete under acid environment[J]. Nuclear Engineering & Design, 2011,241(10):95-102.
    [16] 陈四利,张精禹,宁宝宽,等.硫酸钠溶液对水泥土抗剪强度的影响试验[J].水利水电科技进展,2015,35(6):82-85.(CHEN Sili, ZHANG Jingyu, NING Baokuan, et al. Influence of sodium sulfate solution on shear strength of soil-cement[J]. Advances in Science and Technology of Water Resources, 2015, 35(6):82-85.(in Chinese))
    [17] 李吉林.山东某大型电厂桩基混凝土防腐蚀性试验[J].水利水电科技进展,2013,33(6):87-90.(LI Jilin. Corrosion resistance test of pile foundation concrete of a large power plant in shandong province[J]. Advances in Science and Technology of Water Resources, 2013, 33(6):87-90.(in Chinese))
    [18] 蒋林华,刘蓉,莫莉莉,等. 阳离子类型对混凝土中钢筋腐蚀临界氯离子浓度的影响[J]. 江苏大学学报(自然科学版),2013,34(4):476-480.(JIANG Linhua, LIU Rong, MO Lili, et al. Effect of chloride cation type on chloride threshold value for steel corrosion in concrete[J]. Journal of Jiangsu University(Natural Science Edition), 2013, 34(4):476-480.(in Chinese))
    [19] 蒋林华,姜少博,王珠银,等. 核酸阻锈剂在模拟混凝土孔溶液中对钢筋的阻锈作用[J]. 建筑材料学报, 2017, 20(6):870-875.(JIANG Linhua, JIANG Shaobo, WANG Zhuyin, et al. Corrosion inhibition effect of nucleic acid corrosion inhibitor on rebar in simulated concrete pore solutions[J]. Journal of Building Materials, 2017, 20(6):870-875.(in Chinese)
    [20] SOLMAZ R RAHIN E A, DÖNER A, et al. The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution[J]. Corrosion Science, 2011, 53(10):3231-3240.
    [21] AHMAD S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction: a review[J]. Cement & Concrete Composites, 2003, 25(4):459-471.
    [22] MONTEMOR M F, SIMOES A M P, FERREIRA M G S. Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques[J]. Cement & Concrete Composites, 2003, 25(4):491-502.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋林华,陈晨,郭明志,等.共存阴离子对核酸阻锈剂在模拟混凝土孔溶液中钢筋阻锈作用的影响[J].水利水电科技进展,2020,40(1):88-94.(JIANG Linhua, CHEN Chen, GUO Mingzhi, et al. Effect of coexisting anions on corrosion of reinforced steel treated by DNA corrosion inhibitor in simulated concrete pore solution[J]. Advances in Science and Technology of Water Resources,2020,40(1):88-94.(in Chinese))

复制
分享
文章指标
  • 点击次数:1815
  • 下载次数: 2674
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2020-01-22