基于无人机自标定的表面流场测量方法
作者:
中图分类号:

TV123

基金项目:

:国家重点研发计划(2017YFC0405703);国家自然科学基金(51779151);中央级公益性科研院所基本科研业务费专项(Y220005);南通市科技计划(JC2018143)


Surface flow field measurement method based on UAV self-calibration
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    针对无人机图像标定及配准等关键技术问题,提出了一种基于无人机自标定的表面流场测量方法。该方法基于运动恢复结构(SFM)三维重建技术完成无人机图像自标定,采用加速稳健特征变换(SURF)方法对无人机图像进行配准。将该方法应用于南京市三汊河河口闸下游表面流场测量,结果表明,基于SFM的三维重建精度可以满足自标定的要求,不需要另外设置地面控制点对无人机图像进行标定,简化无人机标定过程,SURF方法可有效地消除无人机位置飘移对表面流场测量结果的影响。

    Abstract:

    Aiming at the key technical problems of unmanned aerial vehicle(UAV)image calibration and registration, a surface flow field measurement method based on UAV self-calibration is proposed, which is based on structure from motion(SFM)3D reconstruction technology to complete the UAV image self-calibration and speed-up robust features(SURF)method for UAV image registration. The method was applied to measure the surface flow field downstream of the Sancha River Estuary Sluice in Nanjing City. The results show that the accuracy of the 3D reconstruction based on SFM can meet the requirements of self-calibration, and there is no need to set ground control points to calibrate the UAV images, which simplifies the UAV calibration process. SURF method can effectively eliminate the influence of UAV position drift on the surface flow field measurement results.

    参考文献
    相似文献
    引证文献
引用本文

陈诚,王新,李子阳,等.基于无人机自标定的表面流场测量方法[J].水利水电科技进展,2020,40(4):39-42.(CHEN Cheng, WANG Xin, LI Ziyang, et al. Surface flow field measurement method based on UAV self-calibration[J]. Advances in Science and Technology of Water Resources,2020,40(4):39-42.(in Chinese))

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2020-08-05