基于瑞雷波速的碾压混凝土压实效果评价
作者:
中图分类号:

TV642.2

基金项目:

国家自然科学基金(51879094)


Evaluation of compaction effect of RCC based on Rayleigh wave velocity
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
  • 文章评论
    摘要:

    针对碾压混凝土坝现场碾压工艺压实效果的可靠评价和实时动态控制问题,提出了基于瑞雷波速检测的碾压热层高效压实度评价方法。依托切比雪夫Ⅰ型高通滤波联合小波阈值的信号去噪方法,构建了仓面网格化单元样本测点的压实度回归预测模型,通过Kriging空间插值法进行压实质量全仓面可视化评价。结合工程现场应用实例,结果表明:联合去噪方法可以有效抑制施工现场的干扰噪声,计算波速值分布;基于瑞雷波速和含湿率的多元非线性回归模型在拟合优度和预测精度方面上均优于其他对比模型;利用Kriging空间插值法进行区域性优化赋值,可以实现全仓面质量缺陷实时动态控制。

    Abstract:

    Aiming at the problem of reliable evaluation and real-time dynamic control of compaction effect of roller compacted concrete(RCC)dam on site, a new evaluation method for compaction degree of RCC thermal layer based on Rayleigh wave velocity detection is proposed. Relying on Chebyshev type I high-pass filtering combined with wavelet threshold signal denoising method, a regression prediction model for compactness of grid surface unit sample points is established, and the entire construction area visualization evaluation of compaction quality is performed by Kriging space interpolation method. Combined with an engineering field application example, the results show that the joint denoising method can effectively suppress the interference noise at the construction site, and the calculated wave velocity value is evenly distributed. In terms of goodness of fit and prediction accuracy, the multivariate nonlinear regression model based on Rayleigh wave velocity and moisture content performs better than other comparison models. The Kriging space interpolation method is used to perform regional optimization assignments to achieve real-time dynamic control of the quality defects for the entire construction area.

    参考文献
    [1] 刘东海,李丙扬,崔博.高碾压混凝土坝智能碾压理论研究[J].中国工程科学,2011,13(12):74-79.(LIU Donghai, LI Bingyang, CUI Bo. Research on intelligent compaction theory of high roller compacted concrete dam[J].Engineering Sciences,2011,13(12):74-79.(in Chinese))
    [2] 林达.碾压混凝土坝施工压实质量预测模型研究[D].天津:天津大学,2012.
    [3] 孙金伟, 孙蓓, 许文盛, 等.小流域治理中现浇绿化混凝土的植物生长研究[J].水资源保护,2017,33(增刊1):153-154.(SUN Jinwei,SUN Bei,XU Wensheng, et al.Study on plant growth of cast-in-place green concrete in small watershed management[J].Water Resources Protection,2017,33(Sup1):153-154.(in Chinese))
    [4] 房曰荣,沈斐敏.基于小波阈值的瑞雷波信号去噪研究[J].南京工程学院学报(自然科学版),2012,10(4):43-47.(FANG Yuerong,SHEN Feimin.Research on denoising of rayleigh wave signal based on wavelet basis [J].Journal of Nanjing Institute of Technology(Natural Science Edition),2012,10(4):43-47.(in Chinese))
    [5] 田正宏,苏伟豪,郑祥,等.基于GA-BP神经网络的碾压混凝土压实度实时评价方法[J].水利水电科技进展,2019,39(3):81-86.(TIAN Zhenghong,SU Weihao,ZHENG Xiang,et al.Real-time evaluation method of compaction degree for roller-compacted concrete based on GA-BP neural network[J].Advances in Science and Technology of Water Resources,2019,39(3):81-86.(in Chinese))
    [6] 欧珠光.岩滩水电站工程RCC振实机理研究的综合报告[J].湖北水力发电,1990(1):16-23.(OU Zhuguang.Comprehensive report on RCC vibration mechanism of Yantan Hydropower Station Project[J].Hubei Hydroelectric Power,1990(1):16-23.(in Chinese))
    [7] 杜尧,陈启慧,和鹏飞,等.南京地区暴雨变化特性分析[J].水资源保护,2019,35(6):89-94.(DU Yao,CHEN Qihui,HE Pengfei,et al.Analysis of rainstorm variation characteristics in Nanjing region[J].Water Resources Protection,2019,35(6):89-94.(in Chinese))
    [8] DONOHO D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
    [9] 文鸿雁.基于小波理论的变形分析模型研究[D].武汉:武汉大学,2004.
    [10] DONOHO D L,JOHNSTONE L.Ideal spatial adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455.
    [11] MARIA H,YANNIS B,MICHALIS V.On clustering validation techniques[J].Journal of Intelligent Information Systems,2001,17(2/3):107-145.
    [12] 陶珂.小波去噪质量评价方法研究[D].长沙:中南大学,2012.
    [13] 汪新凡.小波基选择及其优化[J].株洲工学院学报,2003(5):33-35.(WANG Xinfan.Selection and optimization of wavelet basis[J].Journal of Zhuzhou Institute of Technology,2003(5):33-35.(in Chinese))
    [14] 刘东海,李子龙,王爱国.堆石料压实质量实时监测指标与碾压参数的相关性分析[J].天津大学学报,2013,46(4):361-366.(LIU Donghai,LI Zilong,WANG Aiguo.Correlation analysis of rolling parameters and real-time monitoring index for rockfill dam compaction quality evaluation[J].Journal of Tianjin University,2013,46(4):361-366.(in Chinese))
    [15] CANILLAS E C,SALOKHE V M.Regression analysis of some factors influencing soil compaction[J].Soil and Tillage Research,2001,61(3/4):167-178.
    [16] 刘建波.碾压混凝土可碾性和层间结合质量检测研究[D].南京:河海大学,2017.
    [17] THOMPSON M J,WHITE D J.Estimating compaction of cohesive soils from machine drive power[J].Journal of Geotechnical and Geoenvironmental Engineering,2008,134(12):1771-1777.
    [18] DONDI G,SANGIORGI C,LANTIERI C.Applying geostatistics to continuous compaction control of construction and demolition materials for road embankments[J].Journal of Geotechnical and Geoenvironmental Engineering,2013,140(3):1-4.
    [19] 曾怀恩,黄声享.基于Kriging方法的空间数据插值研究[J].测绘工程,2007(5):5-8.(ZENG Huaien,HUANG Shengxiang.Research on spatial data interpolation based on Kriging method[J].Surveying and Mapping Engineering,2007(5):5-8.(in Chinese))
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

屈嘉程,田正宏,孙啸,等.基于瑞雷波速的碾压混凝土压实效果评价[J].水利水电科技进展,2020,40(4):58-64.(QU Jiacheng, TIAN Zhenghong, SUN Xiao, et al. Evaluation of compaction effect of RCC based on Rayleigh wave velocity[J]. Advances in Science and Technology of Water Resources,2020,40(4):58-64.(in Chinese))

复制
分享
文章指标
  • 点击次数:1285
  • 下载次数: 1973
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2020-08-05