2022, 42(4):74-79.DOI: 10.3880/j.issn.1006-7647.2022.04.013
摘要:为了提高高拱坝物理力学参数反演的精度及效率,将Jaya智能优化方法与高斯过程机器学习理论引入大坝安全监控领域,提出了基于Jaya-高斯过程回归代理模型的拱坝参数反演分析方法。采用高斯过程回归代理模型代替传统的有限元计算,并利用3种智能优化算法进行参数寻优。结果表明:Jaya算法相比于PSO算法、GWO算法,不仅反演精度高、收敛速度快,且具有很好的稳定性;所提出反分析策略在反演用时方面比直接调用有限元计算的反分析方法节省80%以上。本文方法不仅能够满足计算精度要求,且大大缩减了计算时间,为高拱坝物理力学参数反演分析提供了一种高效的方法。