基于C-Vine Copula的城市洪涝多致灾因子遭遇风险分析
作者:
作者单位:

(1.河海大学水文水资源学院,江苏 南京 210098;2.皖江工学院水利工程学院,安徽 马鞍山 243031 ;3.河海大学农业科学与工程学院,江苏 南京 210098 )

作者简介:

薛联青(1973—),女,教授,博士,主要从事生态水文与环境水文研究。E-mail:lqxue@hhu.edu.cn 通信作者:刘远洪(1991—),男,助理研究员,博士,主要从事生态水文研究。E-mail:lyh910926@163.com

基金项目:

江苏省水利科技项目(2024045);国家重点研发计划项目(2023YFC3206804);新疆生产建设兵团科技合作项目(2022BC001)


Encounter risk analysis of multi-hazard factors of urban flood based on C-Vine Copula//
Author:
Affiliation:

(1.College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;2.School of Hydraulic Engineering, Wanjiang University of Technology, Maanshan 243031,China;3.College of Agriculture Science and Engineering, Hohai University, Nanjing 210098, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    基于C-Vine Copula构建了无锡市主城区历时分别为1、3、7d的降水量、水位及上游流量3种致灾因子的高维联合分布模型,采用相关性系数和尾部依赖系数验证变量组合间复杂的非线性结构和依赖性,计算不同遭遇情景下变量组合的联合遭遇风险率和联合遭遇重现期,探讨了多致灾因子遭遇对城市洪涝灾害的协同影响和动态反馈。结果表明:无锡市主城区7d三变量组合相关性最高,尤其在高极值风险上表现较强的依赖性,其上尾依赖系数高达0.6718;三变量组合的联合遭遇风险率最大,双变量组合次之,单变量最小,当降水量、水位、流量重现期均为10a时,7d三变量组合的联合遭遇风险率为21.26%,双变量组合的联合遭遇风险率分别为18.39%、18.37%、13.27%;对于三变量组合的联合重现期缩减率,1d三变量组合主要受上游流量的影响,最大联合重现期缩减率为29.2%,3、7d三变量组合主要受降水量的影响,最大联合重现期缩减率分别为29.4%、32.7%。

    Abstract:

    Based on the C-Vine Copula, a high-dimensional joint distribution model was constructed for three hazard factors in the main urban area of Wuxi City, including precipitation, water level, and upstream flow, with durations of 1,3, and 7 d. The complex nonlinear structures and dependencies between variable combinations were verified using correlation coefficients and tail dependence coefficients. The joint encounter risk rates and joint encounter return periods of variable combinations under different scenarios were calculated to explore the synergistic effects and dynamic feedback of multi-disaster-causing factors on urban flood disasters. The results show that the 7d three-variable combination in the main urban area of Wuxi City has the highest correlation, particularly demonstrating strong dependence in high extreme-value risks, with an upper tail dependence coefficient as high as 0.6718. The joint encounter risk rate is the highest for the three-variable combination, followed by the two-variable combination, and the lowest for the single-variable combination. When the return periods of precipitation, water level, and flow are all 10 a, the joint encounter risk rate for the 7d three-variable combination is 21.26%, while those for the two-variable combinations are 18.39%, 18.37%, and 13.27%, respectively. For the joint return period reduction rate of the three-variable combination, the 1 d combination is mainly influenced by upstream flow, with a maximum joint return period reduction rate of 29.2%, while the 3d and 7d combinations are primarily influenced by precipitation, with maximum joint return period reduction rates of 29.4% and 32.7%, respectively. Keywords: urban flood; hazard factor; C-Vine Copula; tail dependency; joint encounter risk rate; joint encounter recurrence period; Wuxi City 〖FL

    参考文献
    相似文献
    引证文献
引用本文

薛联青,潘桐,刘远洪.基于C-Vine Copula的城市洪涝多致灾因子遭遇风险分析[J].水资源保护,2025,41(2):77-87.(XUE Lianqing, PAN Tong, LIU Yuanhong. Encounter risk analysis of multi-hazard factors of urban flood based on C-Vine Copula//[J]. Water Resources Protection,2025,41(2):77-87.(in Chinese))

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-20
  • 在线发布日期: 2025-04-14