湖泊藻类动态模型数据同化模式的改进
作者:
中图分类号:

X524

基金项目:

国家重点研发计划(2018YFC0830800);江苏省双创团队(SC917001);南京水利科学研究院创新团队(Y917020)


Modify of data assimilation model for lake algae dynamic model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
  • 文章评论
    摘要:

    以太湖为研究区域,采用2014—2016年的水环境生态监测数据,率定了三维水生态动力学模型(3DHED),模拟了太湖蓝藻生物量的时空变化;通过融入遥感数据建立了基于集合卡尔曼滤波(EnKF)的蓝藻生物量预测数据同化(DA)模式,同时提出了一种改进数据同化(mDA)的策略,降低了遥感数据不确定性的影响,显著提升了模型模拟精度。结果表明:相比3DHED蓝藻生物量的模拟结果,DA模拟结果的均方根误差均值降低了10.4%,IOA均值增加了48.8%;mDA在DA基础上对蓝藻生物量的模拟精度进一步提升,其均方根误差均值为1.16 mg/L,在DA基础上降低了8.6%,IOA均值为0.71,在DA基础上增加了10.9%,并有效提升了对蓝藻生物量峰值的捕捉能力,表明提出的mDA方法能有效减小原DA模式中遥感观测数据误差的影响,提升水华模拟精度。

    Abstract:

    Taking Taihu Lake as the research area, a three-dimensional hydro-ecological dynamics(3DHED)model was developed to simulate the spatiotemporal variation of cyanobacteria biomass in Taihu Lake based on the water environmental ecological monitoring data from 2014 to 2016. A data assimilation(DA)model of cyanobacteria biomass prediction based on ensemble Kalman filter(EnKF)was established by integrating remote sensing data. At the same time, a modified data assimilation(mDA)strategy is proposed to reduce the impact of remote sensing data uncertainty and significantly improve the simulation accuracy of the model. The results showed that compared with 3DHED imulation results, the RMSE of DA simulation results decreased by 10. 4%, and the IOA increased by 48. 8%. The simulation accuracy of mDA for cyanobacteria biomass based on DA was further improved. The mean RMSE of mDA was 1. 16 mg/L, which was 8. 6% lower than that of DA, and the mean IOA was 0. 71, which was 10. 9% higher than that of DA. mDA effectively enhanced the ability to capture the peak biomass of cyanobacteria, which means that the proposed method can effectively reduce the influence of remote sensing data error in the original DA model and improve the accuracy of bloom simulation.

    参考文献
    [1] 叶许春,孟元可,张永生,等.三峡库区香溪河回水区营养状态变化特征与驱动因子[J].水资源保护,2018,34(4):80-85.(YE Xuchun,MENG Yuanke,ZHANG Yongsheng,et al.Variation characteristics of trophic states of Xiangxi River backwater area in Three Gorges Reservoir and its driving factors[J].Water Resources Protection,2018,34(4):80-85.(in Chinese))
    [2] 中华人民共和国生态环境部.2018年《中国生态环境状况公报》(摘录二)[J].环境保护,2019,47(12):50-55.(Ministry of Ecology and Enviroment of the Peoples Republic of China.China ecological environment status bulletin in 2018(excerpt 2)[J].Environmental Protection,2019,47(12):50-55.(in Chinese))
    [3] 王伟琴,金永堂,吴斌,等.水源水中微囊藻毒素的遗传毒性与健康风险评价[J].中国环境科学,2010,30(4):468-476.(WANG Weiqin,JIN Yongtang,WU Bin,et al.Assessment on genotoxicity and health risks of microcystin in drinking water sources[J].China Environmental Science,2010,30(4):468-476.(in Chinese))
    [4] HAMRICK J M.A three-dimensional environmental fluid dynamics computer code:theoretical and computational aspects[J].Virginia Institute of Marine Science,1992,317:1-63.
    [5] AMBROSE R B,WOOL T A,MARTIN J L.The water quality analysis and simulation program,WASP5:part A:model documentation[J].Athens Environmental Research Laboratory,1993,1:201-210.
    [6] LOS F J,VILLARS M T,VAN DER T,et al.A 3-dimensional primary production model(BLOOM/GEM)and its applications to the South North Sea:coupled physical-chemical-ecological model[J].Journal of Marine Systems,2008,74(1/2):259-294.
    [7] CHEN C,HUANG J,CHEN Q,et al.Assimilating multi-source data into a three-dimensional hydro-ecological dynamics model using Ensemble Kalman Filter[J].Environmental Modelling & Software,2019,117:188-199.
    [8] 张洪.基于EFDC模型滇池外海水环境仿真研究[D].杭州:浙江大学,2017.
    [9] VENALAINEN A,SAHLGREN V,PODSECHIN V,et al.Small-scale variability of the wind field over a typical Scandinavian lake[J].Boreal Environment Research,2003,8:71-81.
    [10] SEKADENDE B C,LYIMO T J,KURMAYER R.Microcystin production by cyanobacteria in the Mwanza Gulf(Lake Victoria,Tanzania)[J].Hydrobiologia,2005,543(1):299-304.
    [11] 陈鹤,杨大文,刘钰,等.集合卡尔曼滤波数据同化方法改进土壤水分模拟效果[J].农业工程学报,2016,32(2):99-104.(CHEN He,YANG Dawen,LIU Yu,et al.Data assimilation technique based on ensemble Kalman filter for improving soil water content estimation[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(2):99-104.(in Chinese))
    [12] 王卫光,李进兴,魏建德,等.基于蒸散发数据同化的径流过程模拟[J].水科学进展,2018,29(2):159-168.(WANG Weiguang,LI Jinxing,WEI Jiande,et al.Runoff simulation by hydrological model based on the assimilated evapotranspiration[J].Advances in Water Science,2018,29(2):159-168.(in Chinese))
    [13] 李渊,李云梅,吕恒,等.基于数据同化的太湖叶绿素多模型协同反演[J].环境科学,2014,35(9):3389-3396.(LI Yuan,LI Yunmei,LYU Heng.et al.Muti-model collaborative retrieval of Chlorophyll a in Taihu Lake based on data assimilation[J].Environmental Science,2014,35(9):3389-3396.(in Chinese))
    [14] 马建文,秦思娴.数据同化算法研究现状综述[J].地球科学进展,2012,27(7):747-757.(MA Jianwen,QING Sixian.Recent advances and development of data assimilation algorithms[J].Advances in Earth Science,2012,27(7):747-757.(in Chinese))
    [15] LOOS S,SHIN C M,SUMIHAR J,et al.Ensemble data assimilation methods for improving river water quality forecasting accuracy[J].Water Research,2019,115:343.
    [16] 刘卓,李志杰,胡柳明,等.基于集合卡尔曼滤波的湖泊富营养化模型Delft3D-BLOOM数据同化[J].湖泊科学,2017,29(5):1070-1083.(LIU Zhuo,LI Zhijie,HU Liuming,et al.Ensemble Kalman filter based data assimilation in the Delft3D-BLOOM lake eutrophication model[J].Journal of Lake Science,2017,29(5):1070-1083.(in Chinese))
    [17] 王寿兵,徐紫然,张洁.大型湖库富营养化蓝藻水华防控技术发展述评[J].水资源保护,2016,32(4):88-99.(WANG Shoubing,XU Ziran,ZHANG Jie.A review of technologies for prevention and control of cyanobacteria blooms in large-scale eutrophicated lakes and reservoirs[J].Water Resources Protection,2016,32(4):88-99.(in Chinese))
    [18] 赵静,胡庆芳,王腊春,等.基于MSWEP数据的太湖流域降水特性分析[J].水资源保护,2020,36(2):27-33.(ZHAO Jing,HU Qingfang,WANG Lachun,et al.Analysis of precipitation characteristics in Taihu Lake Basin based on MSWEP[J].Water Resources Protection,2020,36(2):27-33.(in Chinese))
    [19] 王华,陈华鑫,徐兆安,等.2010—2017年太湖总磷浓度变化趋势分析及成因探讨[J].湖泊科学,2019,31(4):919-929.(WANG Hua,CHEN Huaxin,XU Zhaoan,et al.Variation trend of total phosphorus and its controlling factors in Lake Taihu,2010-2017[J].Journal of Lake Science,2019,31(4):919-929.(in Chinese))
    [20] 王寿兵,屈云芳,徐紫然.基于生物操纵的富营养化湖库蓝藻控制实践[J].水资源保护,2016,32(5):1-4.(WANG Shoubing,QU Yunfang,XU Ziran.Algal bloom control in eutrophic lakes and reservoirs based on biomanipulation[J].Water Resources Protection,2016,32(5):1-4.(in Chinese))
    [21] 刘聚涛,杨永生,高俊峰,等.太湖蓝藻水华灾害灾情评估方法初探[J].湖泊科学,2011,23(3):334-338.(LIU Juntao,YANG Yongsheng,GAO Junfeng,et al.Comprehensive evaluation method of cyanobacteria bloom hazard in Lake Taihu[J].Journal of Lake Science,2011,23(3):334-338.(in Chinese))
    [22] 朱伟,陈怀民,王若辰,等.2017年太湖水华面积偏大的原因分析[J].湖泊科学,2019,31(3):621-632.(ZHU Wei,CHEN Huaimin,WANG Ruochen,et al.Analysis on the reasons for the large bloom area of Lake Taihu in 2017[J].Journal of Lake Science,2019,31(3):621-632.(in Chinese))
    [23] LI Z,CHEN Q,XU Q.Modeling algae dynamics in Meiliang Bay of Taihu Lake and parameter sensitivity analysis[J].Journal of Hydro-environment Research,2015,9(2):216-225.
    [24] 郭静,陈求稳,李伟峰.湖泊水质模型SALMO在太湖梅梁湾的应用[J].环境科学学报,2012,32(12):3119-3172.(GUO Jing,CHEN Qiuwen,LI Weifeng.Application of lake model SALMO to the Meiliang Bay of Taihu Lake[J].Acta Scientiae Circumstantiae,2012,32(12):3119-3127.(in Chinese))
    [25] 李志杰.湖泊水生态模型多元数据同化[D].北京:中国科学院大学,2015.
    [26] RENS E G.Improving the algal bloom prediction in the North Sea by Ensemble Kalman filtering in the GEM/BLOOM model[D].TU Delft:Delft University of Technology,2013.
    [27] CHEN W,HUANG C,SHEN H,et al.Comparison of ensemble-based state and parameter estimation methods for soil moisture data assimilation[J].Advances in Water Resources,2015,86:425-438.
    [28] HUANG J,GAO J,LIU J,et al.State and parameter update of a hydrodynamic-phytoplankton model using ensemble Kalman filter[J].Ecological Modelling,2013,263:81-91.
    [29] 丁建丽,陈文倩,王璐.HYDRUS模型与遥感集合卡尔曼滤波同化提高土壤水分监测精度[J].农业工程学报,2017,33(14):166-172.(DING Jianli,CHEN Wenjing,WANG Lu.Improving monitoring precision of soil moisture by assimilation of HYDRUS model and remote sensing-based data by ensemble Kalman filter[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(14):166-172.(in Chinese))
    [30] 孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.(KONG Fanxiang,GAO Guang.Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes[J].Acta Ecologica Sinica,2005(3):589-595.(in Chinese))
    [31] 孔繁翔,马荣华,高俊峰,等.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学,2009,21(3):314-328.(KONG Fanxiang,MA Ronghua,GAO Junfeng,et al.The theory and practice of prevention,forecast and warning on cyanobacterial bloom in Lake Taihu[J].Journal of Lake Science,2009,21(3):314-328.(in Chinese))
    [32] 张艳会,李伟峰,陈求稳.太湖水华程度及其生态环境因子的时空分布特征[J].生态学报,2016,36(14):4337-4345.(ZHANG Yanhui,LI Weifeng,CHEN Qiuwen,et al.Spatial-temporal variance of the intensity of algal bloom and related environmental and ecological factors in Lake Taihu[J].Acta Ecologica Sinica,2016,36(14):4337-4345.(in Chinese))
    [33] 秦伯强,杨桂军,马健荣,等.太湖蓝藻水华“暴发”的动态特征及其机制[J].科学通报,2016,61(7):759-770.(QIN Boqiang,YANG Guijun,MA Jianrong,et al.Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu[J].China Science Bulletin,2016,61(7):759-770.(in Chinese))
    [34] 李渊,李云梅,吕恒,等.太湖叶绿素a同化系统敏感性分析[J].湖泊科学,2015,27(1):163-174.(LI Yuan,LI Yunmei,LYU Heng,et al.Sensitivity analysis on Lake Taihu data assimilation scheme of chlorophyll-a concentration[J].Journal of Lake Science,2015,27(1):163-174.(in Chinese))
    [35] 师春香,谢正辉,钱辉,等.基于卫星遥感资料的中国区域土壤湿度EnKF数据同化[J].中国科学:地球科学,2011,41(3):375-385.(SHI Chunxiang,XIE Zhenghui,QIAN Hui,et al.China land soil moisture EnKF data assimilation based on satellite remote sensing data[J].Scientia Sinica Terrae,2011,41(3):375-385.(in Chinese))
    [36] 朱广伟.太湖水质的时空分异特征及其与水华的关系[J].长江流域资源与环境,2009,18(5):439-445.(ZHU Guangwei.Spatio-temporal distribution pattern of water quality in Lake Taihu and its relation with cyanobacterial blooms[J].Resources and Environment in the Yangtze Basin,2009,18(5):439-445.(in Chinese))
    [37] 金颖薇,朱广伟,许海,等.太湖水华期营养盐空间分异特征与赋存量估算[J].环境科学,2015,36(3):936-945.(JIN Yinwei,ZHU Guangwei,XU Hai,et al.Spatial distribution pattern and stock estimation of nutrients during bloom season in Lake Taihu[J].Environmental Science,2015,36(3):936-945.(in Chinese))
    [38] 张艳会,李伟峰,陈求稳.太湖蓝藻水华发生风险区划[J].湖泊科学,2015,27(6):1133-1139.(ZHANG Yanhui,LI Weifeng,CHEN Qiuwen.Algae bloom risk zoning of Lake Taihu[J].Journal of Lake Science,2015,27(6):1133-1139.(in Chinese))
    [39] 邹逸航,马旭林,姜胜,等.COSMIC掩星资料同化对台风“天兔”预报影响的试验[J].海洋学研究,2017,35(3):9-19.(ZHOU Yihang,MA Xulin,JIANG Sheng,et al.Effect of COSMIC occultation data assimilation on prediction of typhoon Usage[J].Journal of Marine Sciences,2017,35(3):9-19.(in Chinese))
    [40] 陈元鹏,任佳,王力.基于多源遥感数据的生态保护修复项目区监测方法评述[J].生态学报,2019,39(23):8789-8797.(CHEN Yuanpeng,REN Jia,WANG Li.Review on monitoring method of ecological conservation and restoration project area based on multi-source remote sensing data[J].Acta Ecologica Sinica,2019,39(23):8789-8797.(in Chinese))
    [41] 张成成.藻类动力学模型和三维水流模型结合及其应用[D].北京:中国科学院大学,2014.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李港,陈诚,何欣霞,等.湖泊藻类动态模型数据同化模式的改进[J].水资源保护,2021,37(4):156-165.(LI Gang, CHEN Cheng, HE Xinxia, et al. Modify of data assimilation model for lake algae dynamic model[J]. Water Resources Protection,2021,37(4):156-165.(in Chinese))

复制
分享
文章指标
  • 点击次数:1094
  • 下载次数: 1494
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-07-21
  • 出版日期: 2021-07-20