延迟退休政策网络舆情的演化规律、生发机理及治理策略——基于NLP的网络大数据分析
作者:
作者单位:

(1.南京大学新闻传播学院;2.江苏省老龄文明智库)

作者简介:

孙永健(1995—),男,助理研究员,博士,主要从事传播社会学和人口社会学研究。Email: yongjiansun@nju.edu.cn

基金项目:

国家社会科学基金重大项目(23&ZD186);江苏省社会科学基金重点项目(JSZY202402)


The Evolution Pattern, Mechanism and Governance Strategy of Online Public Opinion on the Delayed Retirement Policy——Based on NLP Analysis of Online Big Data
Author:
Affiliation:

(1.School of Journalism and Communication, Nanjing University;2.Jiangsu Provincial Ageing-Responsive Civilization Think Tank)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    实施延迟退休政策是落实积极应对人口老龄化国家战略的重要举措。以微博和抖音平台主流媒体的评论内容为研究对象,借助Python数据挖掘和NLP情感分析等研究工具,总结公众对此次延迟退休政策的态度、意见及看法,以期呈现该项政策的网络舆情特征与演化规律,为完善相关政策提供研究支持。结果显示,公众对于延迟退休政策的评价总体呈积极和中立态度,“支持”“自愿”“弹性”“灵活”等高频词反映了多数公众对此次延迟退休政策的肯定态度,期望政策能够根据个体需求灵活调整。此外,该政策的舆情效应还具有讨论主体多元、讨论深度提升、次生议题迅速扩散、社会心态趋于理性的演化特征。这一“意外性”的网络舆情现象的形成与政府预期管理与舆情调试、民众利益分化与反应各异、政策灵活措辞与情绪安抚、官方舆论引导与精选评论以及网民道德受制与自我审查等因素紧密关联。为此,需要从善待民众期待关切、强化权威信息传播、回应公众核心诉求、构建舆情监控体系等方面采取优化思路和应对举措,进而促进政策与民众的良性互动,推动延迟退休政策的有效执行与日臻完善。

    Abstract:

    Implementing a delayed retirement policy is a crucial measure to advance China’s national strategy of actively addressing population aging in the new era. This study examines public attitudes, opinions, and perceptions of the delayed retirement policy by analyzing comments from major media accounts on Weibo and Douyin. Using Python-based data mining and natural language processing (NLP) sentiment analysis tools, the research identifies the characteristics and evolutionary patterns of online public opinion surrounding this policy, providing insights to refine its implementation. The results reveal that public evaluations of the delayed retirement policy are predominantly positive or neutral. High-frequency terms such as “support”“voluntary”“flexible” and “elastic” reflect widespread public recognition of the policy, with expectations for adjustments tailored to individual needs. Additionally, the public opinion dynamics exhibit distinct evolutionary features, including diverse discussion participants, deepened discourse, rapid diffusion of secondary topics, and a trend toward rational social attitudes. This “unexpected” online opinion phenomenon is closely linked to factors such as government expectation management and sentiment modulation, varying public interests and responses, flexible policy wording and emotional reassurance, official narrative guidance and curated comments, as well as netizens’ moral constraints and self-censorship. To foster constructive interactions between the policy and the public, the study recommends optimizing strategies in several areas: addressing public concerns, strengthening authoritative information dissemination, responding to core public demands, and building a robust public opinion monitoring system. These measures aim to enhance the effective implementation and iterative improvement of the delayed retirement policy.

    参考文献
    相似文献
    引证文献
引用本文

孙永健.延迟退休政策网络舆情的演化规律、生发机理及治理策略——基于NLP的网络大数据分析[J].河海大学学报(哲学社会科学版),2025,27(1):77-89.(SUN Yongjian. The Evolution Pattern, Mechanism and Governance Strategy of Online Public Opinion on the Delayed Retirement Policy——Based on NLP Analysis of Online Big Data[J]. Journal of Hohai University (Philosophy and Socail Sciences),2025,27(1):77-89.(in Chinese))

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-02-20